

(Knowledge for Development)

KIBABII UNIVERSITY UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

END OF SEMESTER EXAMINATIONS YEAR ONE SEMESTER ONE EXAMINATIONS (JAN INTAKE)

FOR THE DEGREE OF BACHELOR OF SCIENCE (COMPUTER SCIENCE)

COURSE CODE: CSC 113

COURSE TITLE: ELECTRONICS

DATE: FRIDAY 14TH, MAY 2021 TIME: 8.00 A.M - 10.00 A.M

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

QUESTION ONE [COMPULSORY] [20 MARKS]

(a) Resistivity of a semiconductor changes with the rise in temperature. Explain

[3 marks]

[4 marks]

b) Differentiate between Valence and Conduction bands

(i) Figure 1 shows a setup for half-wave rectification. Briefly explain how it works.

[4 marks]

- (ii) Draw the typical shape of output waveform if the input signal is a sine wave. [3 marks]
- (iii) Sketch the forward and reverse characteristics of the diode.

[4 marks]

c) Differentiate between the following terms

[2 marks]

i) intrinsic and extrinsic semiconductors

[2 marks]

ii) N-type and P-type semiconductors

- d) Using the graph of figure 2, determine the dc resistance levels for the diode at
 - [2 marks]

ID = 2 mAi) ID = 20 mA [2 marks]

ii)

[4 marks]

VD = -10 Viii)

Figure 2

QUESTION TWO [20 MARKS]

(a) For the series diode configuration of Fig. 3, determine VD, VR, and ID.

[4 marks]

Figure 3

(b) Determine Vo, I1, ID1, and ID2 for the parallel diode configuration of Fig. 4 [6marks]

Figure 4

(c) Differentiate between a diode clipper and a diode clamper.

[2 marks]

(d) For the clippers networks using ideal diodes, draw the resulting output waveforms [8 marks]

QUESTION THREE [20 MARKS]

- a) In a BJT transistor a change of 7.89mA in the emitter current produces a change of 7.8 mA in the collector current. What change in the base current is necessary to produce an equivalent change in the collector current, assuming silicon transistor is used? [4 marks]
- Assuming that a PN junction has just been formed, briefly explain using diagrams what happens.
 [4 marks]
- Using diagrams differentiate between the conduction and valence bands of conductors,
 insulators and semiconductors.
- d) The ratio of the number of free electrons to holes n_e/n_h for two different materials A and B are 1 and <1 respectively. Name the type of semiconductor to which A and B belongs.

[2 marks]

e) Differentiate between Zener effect and avalanche effect

[4 marks]

QUESTION FOUR [20 MARKS]

a) Identify which junction is forward or reverse biased in the figure below. Explain whether the transistor in that biasing state can be used as an amplifier. [3 marks]

- b) How are the collector and base currents affected if the emitter and base of n-p-n transistor have same doping concentrations. [3 marks]
- i) For the Zener shunt regulator of figure 4, determine V_L , V_R , I_Z , and P_Z
 - ii) Repeat part (i) with $R_L = 3 \text{ k}\Omega$

[14 marks]

Figure 4

QUESTION FIVE [20MARKS]

- a) Using the characteristics of Fig. 5, determine
 - i) The resulting collector current if IE = 3 mA and VCB = 10 V.

[2 marks]

ii) The resulting collector current if IE remains at 3 mA but VCB is reduced to 2 V.

[2 marks]

Figure 5

b) Determine the following for the fixed-bias configuration of Fig. 6.

i) I_{BQ} and I_{CQ} .[4 marks]ii) V_{CEQ} .[2 marks]iii) V_B and V_C .[2 marks]iv) V_{BC} .[2 marks]

(ii) Explain the biasing states of a transistor junctions during cut off, active and saturation conditions. In which of these states does the transistor operate in when being used as a switch?
[6 marks]