

(Knowledge for Development)

KIBABII UNIVERSITY

MAIN EXAMINATION

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

MAP 111A

COURSE TITLE:

FUNDAMENTALS/FOUNDATION MATHEMATICS I

DATE: 21/5/2021

TIME: 9 AM - 11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- a. Given that set $A=\{1,4,6,8\}$, $B=\{0,2,4,8,9\}$ and $U=\{$ the digits $\}$. Draw a Venn diagram (3 marks) for A ∩ B
- (8 marks) b. Find the partial fraction decomposition of $\frac{x-3}{x^3+3x}$
- (6 marks) Find the sum of the multiples of 3 between 28 and 112.
- Use the remainder theorem to evaluate $f(x) = 6x^4 x^3 15x^2 + 2x 7$ at x = 2(3 marks)
- (3 marks) Show that $f(x) = x^2$ is an even function
- (3 marks) Find the values of sin60°, cos 45° and tan45°
- Find g.
 - i. $\overrightarrow{u} + \overrightarrow{v}$
 - ii. $\overrightarrow{u} \overrightarrow{v}$ if $\overrightarrow{u} = (3, 4)$ and $\overrightarrow{v} = (6, -2)$ (4 marks)

QUESTION TWO (20 MARKS)

- a. Define the following
 - (2 marks) Disjoint sets i.
 - (2 marks) B is proper subset of A ii.
 - (2 marks) Union of A and B iii.
- b. U is the set of whole numbers from 1 to 15. A is the set of multiples of 3. B is the set of primes. Create a Venn diagram to show the following relationships
 - A'i.
 - ii. $A \cap B$
 - (9 marks) AU B iii.
- c. If $U = \{1, 2, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{1, 2, 3, 5, 7\}$ and $C = \{2, 4, 5\}$. Find
 - (1 mark) $A \cap B$ i. (1 mark)
 - ii. AUB
 - (1 mark) A' iii.
 - (1 mark) $A \cap C$ iv.
 - (1 mark) AUC V.

QUESTION THREE (20 MARKS)

- a. Find the sum of the multiples of 5 between 28 and 112 (5 marks)
- b. Write down the 11th term in the geometric progression 1, 3, 9, (4 marks)
- c. Find the number of terms in the geometric progression 6, 12, 24, ..., 6144 (4marks)
- d. Find the sum to infinity for the series 48 + 24 + 12......... (3 marks)
- e. Express the recurring decimal 0.242424.... as a vulgar fraction (4marks)

QUESTION FOUR (20 MARKS)

- a. What is x in $log_3(x) = 5$ (3 marks)
- b. Calculate y in y = $\log_4 (1/4)$ (3 marks)
- c. Simplify $\log_{a}((x^{2}+1)^{4}x^{\frac{1}{2}})$ (3 marks)
- d. Decompose the following

$$\frac{x^5 - 2x^4 + x^3 + x + 5}{x^3 - 2x^2 + x - 2}$$
 (11 marks)

QUESTION FIVE (20 MARKS)

- a. Show that (x-3) is a factor of $x^3 6x^2 x + 30$. Find the remaining factors. Use the factors to determine the zeros of the polynomials. (7 marks)
- b. Show that the function y = 2x 3 is neither (5 marks)
- c. If f(x) = x + 3 and $g(x) = 3x^2 + 4x + 1$, find
 - i. f(g(x)). (3 marks)
 - ii. g.f(x). (5 marks)