

(Knowledge for Development)

KIBABII UNIVERSITY **UNIVERSITY EXAMINATIONS** 2020/2021 ACADEMIC YEAR

MAIN CAMPUS

MASTERS FIRST YEAR SECOND SEMESTER **EXAMINATIONS**

COURSE CODE: STA 804

COURSE TITLE: STOCHASTIC PROCESS

DATE:

13/5/2021

TIME: 9:00 A.M - 12:00

NOON

INSTRUCTIONS TO CANDIDATES:

Answer Question one and any other two questions.

QUESTION ONE (30MARKS)

- a) i. Define what is meant by probability generating function (pgf) ii. If X is a random variable distributed as binomial with parameters n and P when n is known but P unknown. Obtain the pgf of X and hence compute $E[X^3 + 2X^2 + 3X + 1]$
- b) For a Markov Chain. Show that $P(X_{n+3} = j \mid X_n = i) = P_{ij}^3$
- c) In a branching process, the probability that any individual has j descendants is given by $P_0 = 0$, $P_j = \frac{1}{2^j}$; $j \ge 1$. Show that $G(s) = \frac{s}{2-s}$. Hence compute

i.
$$G_2(S)$$

ii.
$$G_3(S)$$

d) In a 3-state Markov Chain with transition matrix

$$T_3 = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{4} & \frac{3}{4} & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

- i. Show that E_1 is a recurrent non-null state
- ii. Show that E_3 is a transient state

QUESTION TWO (20 MARKS)

Consider a birth –death process in which the probability of a birth and a death in a small time interval $(t, t + \Delta t)$ is $\lambda \Delta t$ and $\mu \Delta t$ respectively, where λ and μ birth and death rates respectively are

- a) Obtain the difference-differential equation for the process
- b) Calculate the pgf of the process
- c) Compute the mean and variance of the process

QUESTION THREE (20 MARKS)

- a) Discuss what is meant by branching process
- b) Let X_n denote the population size at the n^{th} generation in a branching process. Show that

$$V \operatorname{ar}(X_n) = E[Var[X_n \mid X_{n-1}] + Var[E(X_n \mid X_{n-1})]$$

- i. By Probability generating function technique
- ii. Conditional expectation.
- c) If X is distributed as Poisson with parameter λ .
 - i. Obtain the pgf of X
 - ii. Hence compute the mean and variance

QUESTION FOUR (20 MARKS)

- a) A simple random walk on a line or in one dimension occurs when a step forward has probability P and a step back has probability q = 1 P. If X_n denotes the position of the walk at the n^{th} step.
 - i. Obtain the mean of the walk
 - ii. Obtain the variance of the walk
- b) If $V_{n,x}$ denotes the probability that the walk is at state x after n-step. Show that

$$V_{n,x} = \binom{n}{\frac{1}{2}(n+x)} \frac{1}{2^n}$$

c) Find the probability that the event $X_6 = 4$ occurs in a random walk with P=0.3.

QUESTION FIVE (20 MARKS)

a) In a four-state Markov Chain has the transition matrix

$$T_4 = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \frac{1}{4} & \frac{1}{2} & 0 & \frac{1}{4} \\ \frac{3}{4} & 0 & \frac{1}{4} & 0 \end{pmatrix}$$

Find f_j the probability that the chain returns at some step to E_j for each state. Determine which states are transient and which states are recurrent. Which states forms a closed subset? Find the limiting behavior of T_4^n as $n \to \infty$.