

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF MASTER OF SCIENCE IN PHYSICS

COURSE CODE:

SPH 811

COURSE TITLE: MATHEMATICAL PHYSICS

DURATION:

2 HOURS

DATE: 14/06/2021

TIME: 8-10AM

INSTRUCTIONS TO CANDIDATES

- Answer ANY THREE QUESTIONS.
- Each question carries 20 MARKS.
- ALL Symbols have their usual meaning
- $\int_0^\infty r^{-1} e^{-r^2} dr = 0$

QUESTION ONE (20 MARKS)

- a) Determine the divergence of the vector field $\vec{V}(x_1, x_2, x_3) = V_1 \hat{e}_1 + V_2 \hat{e}_2 + V_3 \hat{e}_3$ given that it is differentiable. (3marks)
- b) Use the Stokes vector integral theorem to verify the Maxwell's equation of electromagnetism i.e. $\vec{\nabla} \times \vec{B} = \mu_o \vec{J}$ (4marks)
- c) A fluid of density $\rho(\vec{r})$ moves with a velocity $\vec{V}(\vec{r})$. Show that if there are no sinks or sources then the following continuity equation is satisfied. $\frac{\partial \rho(\vec{r})}{\partial x} + \vec{V} \cdot (\rho \vec{V}) = 0$. (5 marks)
- d) Use the calculus of residues to evaluate $\int_0^{2\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} d\theta$ (5marks)
- e) A vector field $\vec{\mathbf{F}} = (2xy + z^3)\mathbf{i} + x^2\mathbf{j} + 3xz^2\mathbf{k}$. Show that the vector field is irrotational. (3marks)

OUESTION TWO (20 MARKS)

- a) Determine the eigen values and the corresponding eigen vectors of the matrix (7marks) $\begin{pmatrix} 0 & -1 & 1 \\ 2 & -3 & 1 \\ 1 & -1 & -1 \end{pmatrix}$
- b) Show that $B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$ (7marks)
- c) Use the result in (b) above to evaluate $\int_0^5 \omega^5 (1 \omega)^4 d\omega$ (3marks)
- d) Show that the vectors $\vec{V}_1=(2,0,-1)$, $\vec{V}_2=(0,-1,0)$ and $\vec{V}_3=(2,0,4)$ in R^3 form an orthogonal set.

QUESTION THREE (20 MARKS)

- a) Use the gamma function to evaluate $\Gamma\left(\frac{1}{2}\right)$ (9marks)
- b) Use the result in (a) above to evaluate $\int_0^\infty x^{\frac{1}{2}} e^{-x^2} dx$ (4marks)
- e) Given the vectors $\vec{V}_1 = (2,0,-1)$, $\vec{V}_2 = (0,-1,0)$ and $\vec{V}_3 = (2,0,4)$ in \mathbb{R}^3 .
 - i) Show that they form an orthogonal set (2marks)
 - ii) Show that they form an orthogonal set (2marks)
 - iii) Form an orthonormal set of vectors (3marks)

QUESTION FOUR (20 MARKS)

a) Use the calculus of residues to show that $\int_0^{2\pi} \frac{d\theta}{a + b \cos \theta} = \frac{2\pi}{\sqrt{a^2 - b^2}}$ where a > b > 0

(5marks)

b) Obtain the first and second forms of the Greens Theorem.

(5marks)

(5marks)

- c) Solve the differential equation $y'' 3y' + 2y = e^{3t}$ given y(0) = 1 and y'(0) = 0 (5 marks)
- d) Obtain the Fourier series for the periodic function defined as

$$f(x) = \begin{cases} -k & -\pi < x < 0 \\ k & 0 < x < \pi \end{cases}$$

QUESTION FIVE (20 MARKS)

- a) Using the Schrodinger equation derive the ground state wave function for a free particle in a one dimensional case. (6marks)
- b) A long rectangular plate has its long sides and the far end at 0°C and the base at 100°C. The width of the plate is 10cm. Find the steady state temperature inside the plate.

(8marks)

e) Given that $\vec{V}_1 = (2, -1, 0)$, $\vec{V}_2 = (1, 0, -1)$ and $\vec{V}_3 = (3, 7, -1)$ is a basis of R^3 . Find the orthogonal basis by Gram-Schmidt procedure hence determine the orthonormal basis (6marks)

Table 15.2 Laplace Transforms

f(s)	F(t)	Limitation
1. 1	$\delta(t)$	Singularity at +0
2. $\frac{1}{s}$	1	s > 0
$3. \frac{n!}{s^{n+1}}$	t^n	s > 0
		n > -1
$4. \ \frac{1}{s-k}$	e^{kt}	s > k
4. $\frac{1}{s-k}$ 5. $\frac{1}{(s-k)^2}$ 6. $\frac{s}{s^2-k^2}$	te^{kt}	s > k
6. $\frac{s}{s^2 - k^2}$	cosh kt	s > k
7. $\frac{k}{s^2 - k^2}$	sinh kt	s > k
7. $\frac{k}{s^2 - k^2}$ 8. $\frac{s}{s^2 + k^2}$	$\cos kt$	s > 0
$\frac{k}{s^2+k^2}$	sin kt	s > 0
$\frac{s-a}{(s-a)^2+k^2}$ $\frac{k}{(s-a)^2+k^2}$	$e^{at}\cos kt$	s > a
$\frac{k}{(s-a)^2+k^2}$	$e^{at}\sin kt$	s > a
$\frac{s^2 - k^2}{(s^2 + k^2)^2}$ $\frac{2ks}{(s^2 + k^2)^2}$	t cos kt	s > 0
$\frac{2ks}{(s^2+k^2)^2}$	t sin kt	0 < z