

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2020/2021 ACADEMIC YEAR
SECOND YEAR FIRST SEMESTER
MAIN EXAMINATION
FOR THE DEGREE BACHELOR OF SCIENCE

COURSE CODE: MAA 2

MAA 211/ MAT 203

COURSE TITLE:

VECTOR ANALYSIS

DATE: 16/06/2021

TIME: 9:00 AM-11:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Pléase Turn Over.

QUESTION ONE COMPULSORY (30 MARKS)

- a) Define the following terms giving three examples for each.
 - Scalar quantity
 - (4 marks) Vector quantity ii.
- b) Prove the associative law for vector addition.

(4 marks)

(3 marks)

- c) Find $|\overrightarrow{AB}|$ if the position vectors of points A and B are 2i + j k and 5i + 4j + 3k.
- d) If $\vec{A} = \sin xy \, i + (3xy 2x)j + e^{xy} \, k$, find
 - i. $\frac{\partial \vec{A}}{\partial x}$ at (0,1)
 - (5 marks) ii. $\frac{\partial \vec{A}}{\partial y}$ at (1,0)
- e) If $\vec{A} = 2i 3j k$ and $\vec{B} = i + 4j 2k$, find $(\vec{A} + \vec{B}) \times (\vec{A} \vec{B})$ (5 marks)
- f) Given $\vec{F} = 2i 3j + k$ and $\vec{r} = i + 2j + 4k$, find the magnitude of the torque or (3 marks) moment of the force \vec{F} .
- g) If $|\vec{a}| = 2$, $|\vec{b}| = 7$ and $|\vec{a} \times \vec{b}| = 7$ find the angle between \vec{a} and \vec{b} . (2 marks)
- h) Given $\vec{A} = \cos t \, i + \sin 2t \, j + e^{2t} k$, determine
 - (2 marks)
 - i. $\frac{d}{dt}(\vec{A})$ ii. $\frac{d^2}{dt^2}(\vec{A})$ (2 marks)

QUESTION TWO (20 MARKS)

- a) Determine a unit vector perpendicular to the plane that contains $\vec{A} = 2i 6j 3k$ and (3 marks) $\vec{B} = 4\mathbf{i} + 3\mathbf{j} - \mathbf{k}$
- b) Find the area of a parallelogram whose adjacent sides are given by the vectors (3 marks) $\vec{A} = 2i - j + k$ and $\vec{B} = 3i + 4j - k$
- c) Show that $div \text{ curl } \vec{A} = 0$ where \vec{A} is a vector field which has continuous second partial (4 marks) derivatives.
- d) If the edges $\vec{a} = -3i + 7j + 5k$, $\vec{b} = -5i + 7j 3k$ and $\vec{c} = 7i 5j 3k$ meet (4 marks) at at a vertex, find the volume of the parallelopiped.
- e) Prove that the points given by the vectors $4\mathbf{i} + 5\mathbf{j} + \mathbf{k}$, $\vec{b} = -\mathbf{i} \mathbf{k}$, $3\mathbf{i} + 9\mathbf{j} + 4\mathbf{k}$ (6 marks) and -4i + 4j + 4k are coplanar.

QUESTION THREE (20 MARKS)

- a) Define the terms
 - i. divergence of a vector field
 - ii. grad of a scalar field

(4 marks)

- b) Find the directional derivative of $\emptyset = x^2yz + 4xz^2$ at (1, -2, -1) in the direction of $2\mathbf{i} \mathbf{j} 2\mathbf{k}$. (4 marks)
- c) Given $\mathbf{A} = x^2 y \mathbf{i} 2xz \mathbf{j} + 2yz \mathbf{k}$, find
 - i. div A

(2 marks)

ii. curl A

(3 marks)

iii. curl curl A

(3 marks)

(4 marks)

d) If
$$\emptyset = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$
 find gradient of \emptyset .

QUESTION FOUR (20 MARKS)

a) State without proving the Green's Theorem in the plane.

(3 marks)

- b) Show that;
 - i. $\vec{V} = (x+3y)i + (y-2z)j + (x-2z)k$ is a solenoidal vector field.

(3 marks)

ii. $\vec{F} = (2xy + z^3)i + x^2j + 3xz^2k$ is a conservative vector field. (3 marks)

c) If \vec{A} and \vec{B} are differentiable vector functions of a scalar t, show that

 $\frac{d(\overrightarrow{A} \cdot \overrightarrow{B})}{dt} = \overrightarrow{A} \cdot \frac{d(\overrightarrow{B})}{dt} + \frac{d(\overrightarrow{A})}{dt} \cdot \overrightarrow{B}$

(3 marks)

- d) A particle moves along a curve whose parametric equations are $x = e^{-2t}$, $y = 2\cos t 3t$, $z = 2\sin 3t$ where t is time, determine its velocity and acceleration at t = 0. (5 marks)
- e) Find the unit normal to the surface $x^2y + 2xz = 4$ at the point (2, -2, 3). (3 marks)

QUESTION FIVE (20 MARKS)

a) Define line integral.

(3 marks)

b) If $\vec{R}(t) = (t - t^2)i + 2t^3j - 3k$, find $\int_0^1 \vec{R}(t) dt$

(5 marks)

- c) If $\mathbf{F} = (3x^2 + 6y)\mathbf{i} 14yz\mathbf{j} + 20xz^2\mathbf{k}$ evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ from (0,0,0) to (1,1,1) along the paths C I the straight line from (0,0,0) to (1,0,0), then to (1,1,0) and then to (1,1,1).
- d) Evaluate $\oint_C (xy + y^2)dx + x^2dy$ where C is the closed curve of the region bounded by y = x and $y = x^2$ using the Green's theorem in the plane. (6 marks)