

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021ACADEMIC YEAR

FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF MASTERS (PHYSICS)

COURSE CODE:

SPH 812

COURSE TITLE:

QUANTUM MECHANICS

DURATION: 2 HOURS

DATE: 15TH JUNE 2021

TIME: 2.00P.M - 4.00P.M

INSTRUCTIONS TO CANDIDATES

Answer any three (3) Questions.

Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page

This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE [20 Marks]

(a) Ex	plain the meaning of the following terms;	[@ 1Mark]		
(i)	State vector			
(ii)	Linear operator			
(iii)	Orthogonal eigen vector			
(iv)	Bra of a vector space			
(v)	Angular momentum	8		
(vi)	Dynamical variable			
(vii)	Scattering amplitude			
(viii)	Adjoint of an operator			
b) Show that eigenvalues and eigen-functions of Hermitian operators are real and				
orthog	gonal respectively	[6Marks]		
	ow that (i) $[L_x, L_y] = i\hbar L_z$ (ii) $[L_x, y] = i\hbar Z$	[6Marks]		

QUESTION TWO [20 Marks]			
a)	What is a perturbation method?	[4 Marks]	
b)	Differentiate between degenerate and non-degenerate perturbation theory	[4 Marks]	
/	1 with an unperturbed Hamiltonian He v		
eigenstate $ n\rangle$ and energy ε_n with a perturbing Hamiltonian V, show t			
	energy correction is given by $\langle n V n\rangle$	[6 Marks]	
d) Consider a perturbation of the form $\frac{1}{2}bx^2$ to the linear harmonic oscillator prob		problem and	
	determine the associated angular frequency, w_n	[6 Marks]	
QUESTION THREE [20 Marks]			
a)	Write down the Pauli matrices σ_x , σ_y and σ_z	[3Marks]	
	Cl	[3Marks]	

a) Write down the Fauli matrices σ_x , σ_y and σ_z b) Show that they are Hermitian matrices c) Obtain the values of σ_x^2 , σ_y^3 and $\sigma_x^2 + \sigma_y^2 + \sigma_z^2$ d) Obtain the values of $\sigma_x \sigma_y$, $\sigma_y \sigma_z$ and $\sigma_z \sigma_x$ [3Marks]

e) Show that the only matrix which commutes with the spin matrices is a multiple of the unit matrix [6Marks]

QUESTION FOUR [20 Marks]

- a) Define the term 'differential cross section' in scattering theory

 b) Explain the general procedure for determination of differential cross section using the [5Marks]
- Born approximation
 c) Explain the main ideas of the Born approximation and Born series [5Marks]
- d) Elastic scattering from heavy nucleus can be represented by;

$$v(r) = \begin{cases} -v_0, & r < R \\ 0, & r > R \end{cases}$$

Use the Born approximation in the central field potential to calculate the differential

cross section in the lowest order in v(r)

[8Marks]

QUESTION FVE [20 Marks]

- a) What is variation method? [4Marks]
- b) List and explain the steps for the application of the variation method for the determination of ground state energies [8Marks]
- c) Consider a particle of mass, m bouncing vertically and elastically in the z-direction on a reflecting hard floor. Treat this as a quantum particle and write down a possible trial wave function and the Hamiltonian of the system [8Marks]

THIS IS THE LAST PRINTED PAGE