

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR SECOND YEAR FIRST SEMESTER MAIN EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: MAA 212

COURSE TITLE: DYNAMICS I

DATE: 14/6/2021

TIME: 2:00 P.M - 4:00 P.M

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE COMPULSORY (30 MARKS)

- a) Define the terms:
 - i) Scalar Product

(1 mark)

ii) Scalar Triple Product

(1 mark)

b) State four properties of scalar triple product

(4 marks)

c) Prove that the projection of \overrightarrow{A} on \overrightarrow{B} is equal to $\overrightarrow{A} \cdot \overrightarrow{b}$ where \overrightarrow{b} is a unit vector in the

direction of \vec{B}

(4 marks)

d) The vertices of a triangle are located at A(6,-1,2), B(-2,3,-4) and C(-3,1,5). Find the angle at vertex A (5 marks)

e) In each case, determine whether the following vectors are linearly dependent or linearly independent:

i)
$$\overrightarrow{A} = 2 i + j - 3 k$$
, $\overrightarrow{B} = i - 4 k$ and $\overrightarrow{C} = 4 i + 3 j - k$

(4 marks)

ii)
$$\vec{A} = i - 3 \ j + 2 \ k$$
, $\vec{B} = 2i - 4 \ j - k$ and $\vec{C} = 3 \ i + 2 \ j - k$

(4 marks)

f) Evaluate the angle between the following two vectors:

i)
$$\vec{a} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
 and $\vec{b} = \begin{pmatrix} 5 \\ 2 \\ 3 \end{pmatrix}$

(4 marks)

ii)
$$\vec{r} = \begin{pmatrix} 7 \\ 2 \\ -1 \end{pmatrix}$$
 and $\vec{t} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$

(3 marks)

QUESTION TWO (20 MARKS)

a) Find the work done in moving an object along the vector $\vec{r} = 3 i + 2 j - 5 k$ if the force

applied is
$$\vec{F} = 2i - j - k$$
. (3 marks)

b) If $\vec{R} = 2i - j + k$, $\vec{S} = i + 3j - 2k$, $\vec{T} = -2i + j - 3k$ and $\vec{U} = 3i + 2j + 5k$, find the scalars

$$a$$
, b and c such that $\overrightarrow{U} = a\overrightarrow{R} + b\overrightarrow{S} + c\overrightarrow{T}$

(5 marks)

c) Find a unit tangent vector on the curve $x = t^2 + 1$, y = 4t - 3, $z = 2t^2 - 6t$ and

determine the unit tangent at a point where t = 2

(3 marks)

d) i) Find the value a so that $\overrightarrow{A} = 2i + aj + k$ and $\overrightarrow{B} = 4i - 2j - 2k$ are

perpendicular.

(2 marks)

ii) Show that
$$\begin{vmatrix} \overrightarrow{A} \times \overrightarrow{B} \end{vmatrix}^2 + \begin{vmatrix} \overrightarrow{A} \cdot \overrightarrow{B} \end{vmatrix}^2 = \begin{vmatrix} \overrightarrow{A} \end{vmatrix}^2 \begin{vmatrix} \overrightarrow{B} \end{vmatrix}^2$$
 (2 marks)

e) The position vector of a particle P at time t is given by:

$$\vec{r} = (2t^2 - 3)i + (4t + 4)j + (t^3 + 2t^2)k$$
. Find:

i) the distance
$$OP$$
 when $t = 0$ (3 marks)

ii) the velocity of
$$P$$
 when $t=1$ (1 mark)

iii) the acceleration of
$$P$$
 when $t = 2$ (1 mark)

QUESTION THREE (20 MARKS)

- a) Find the projection of vector $\vec{A} = i 2j + k$ on the vector $\vec{B} = 4i 4j + 7k$ (3 marks)
- b) A particle moves so that its position vector is given by $\vec{r} = \cos \omega t \, i + \sin \omega t \, j$ where ω is a constant. Show that the:
 - i) Velocity \vec{V} of the particle is perpendicular to \vec{r} . (2 marks)
 - ii) Acceleration \overrightarrow{a} is directed towards the origin and has a magnitude proportional to the distance from the origin. (3 marks)

iii)
$$\overrightarrow{r} \times \overrightarrow{V} = \text{a constant}$$
 (2 marks)

- c) A fish swimming in a horizontal plane has a velocity of $V_0 = \stackrel{\rightarrow}{4} \, i + j$ at a point in the ocean where the position vector is $\stackrel{\rightarrow}{r}_0 = 10 \, i 4 \, j$ relative to a stationary rock at the shore. After the fish swims with a constant acceleration in 20 seconds, its velocity $\stackrel{\rightarrow}{V} = 20 \, i 5 \, j$.
 - i) What are the components of the acceleration (2 marks)
 - ii) What is the direction of acceleration with respect to the fixed x axis (2 marks)
 - iii) Where is the fish at t = 25 seconds? (2 marks)
 - iv) What is its speed and in what direction is it moving? (4 marks)

QUESTION FOUR (20 MARKS)

a) Find the work done in moving an object along a straight line from (3,2,-1) to (2,-1,4) in a force field given by $\vec{F} = 4i - 3j + 2k$ (4 marks)

- b) Evaluate: $\left(2i-3j\right)\left[\left(i+j-k\right)\times\left(2i-k\right)\right]$ (3 marks)
- c) If $\overrightarrow{A} = A_1 \overrightarrow{i} + A_2 \overrightarrow{j} + A_3 \overrightarrow{k}$, $\overrightarrow{B} = B_1 \overrightarrow{i} + B_2 \overrightarrow{j} + B_3 \overrightarrow{k}$ and $\overrightarrow{C} = C_1 \overrightarrow{i} + C_2 \overrightarrow{j} + C_3 \overrightarrow{k}$, show that

$$\vec{A} \bullet \left(\vec{B} \times \vec{C} \right) = \begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix}$$
 (4 marks)

- d) The position in meters of an electron is given by $\vec{r} = 3t \, i 4t^2 \, j + 2 \, k$, where t is the time in seconds. Determine:
 - i) The velocity vector \overrightarrow{V} of the electron (2 marks)
 - ii) The velocity at t = 2 seconds in unit vector notation (2 marks)
 - iii) The magnitude and direction of the velocity at t = 2 seconds (5 marks)

QUESTION FIVE (20 MARKS)

- a) A riffle is aimed horizontally at a target 30 m away. The bullet hits the target 1.9 cm below the aiming point.
 - i) What is the bullet's time of flight? (3 marks)
 - ii) What is the muzzle's velocity of the riffle? (2 marks)
- b) A ball is thrown with a speed of 25m/s at an angle of 40 ° above the horizontal directly towards a wall. The wall is 22m from the release point of the ball.
- i) How long does the ball take to reach the wall? (2 marks)
- ii) How far above the release point does the ball hit the wall? (2 marks)
- iii) What are the horizontal and vertical components of its velocity as it hits the wall? (3 marks)
- c) A rigid body is rotating with angular speed 7rad/s about a fixed axis through the points A(2,3,-1) and B(-4,0,1). The rotation is in the left handed screw relative to \overrightarrow{AB} . Find the angular velocity vector of the body. (3 marks)
- d)The motion of a body rotating about an axis is defined by the notation $\theta = 3t^3 18t^2 + 26t + 8$, where θ is the angular position expressed in radians and t is time in seconds.
 - i) Determine when angular velocity is zero (2 marks)
 - ii) Find the angular position and the total angular distance travelled when the acceleration becomes zero. (3 marks)