

(Knowledge for Development)

KIBABII UNIVERSITY UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

END OF SEMESTER EXAMINATIONS YEAR ONE SEMESTER ONE EXAMINATIONS (JAN INTAKE)

FOR THE DEGREE OF BACHELOR OF SCIENCE (COMPUTER SCIENCE)

COURSE CODE

: CSC 116

COURSE TITLE

ELECTRICAL

PRINCIPLES

DATE: WEDNESDAY 12TH, MAY 2021 TIME: 2.00 P.M -4.00 P.M INSTRUCTIONS TO CANDIDATES

ANSWER QUESTIONS ONE AND ANY OTHER TWO.

QUESTION ONE [COMPULSORY] [30 MARKS]

- a) Calculate the resistance of a copper cable with length 3200 meters and cross section 240 mm²
 [3 marks]
- b) Calculate the resistance of the heating element in a toaster rated at 1.2kw, 240V.[3marks]
- c) Determine the current rating of a fuse whose resistance is 1 ohm and a maximum power rating of 0.25W. [2 marks]
- d) For the circuit of figure 1, Calculate
 - i) The equivalent resistance

[3 marks]

ii) The supply voltage V in the circuit shown.

[6 marks]

Figure 1

- e) The terminal voltage of an open current source is 450V and its short circuit current is 18A. Calculate the internal resistance of the source. [2 marks]
- f) Determine the voltage v3 in the circuit of Figure 2, given that $R_1 = 10\Omega$; $R_2 = 6 \Omega$; $R_3 = 8\Omega$ and $V_S = 3 \text{ V}$.

Figure 2

g) Given that the charge stored by a capacitor is $5 \mu C$ and is charged to 50 V, find its capacitance. [2 marks]

- h) Three resistors R₁, R₂ and R₃ are connected in series to a 240V dc source. The combined voltage drop across R₁ and R₂ is 165V. The combined voltage drop across R₂ and R₃ is 180V. If the total resistance is 8000 ohms, calculate the resistance of each of the three resistors.
- i) Three lamps operating in parallel on a 240V line are rated at 30W, 40W and 50W respectively. Determine the equivalent resistance of this load.
 [3 marks]

QUESTION TWO [20 MARKS]

- a) Three resistors connected in parallel draw a total of 20mA from the source. If the resistor values are $8k\Omega$, $20k\Omega$ and $40k\Omega$ respectively, calculate the current flowing through each resistor [5 marks]
- b) Using the circuit of figure 3, calculate:
 - i) The equivalent resistance of the network when the load current is zero [5 marks]
 - ii) The input voltage when the load current is 10mA. [2 marks]

Figure 3

Figure 4

- d) Three capacitors A, B, C have capacitances 10, 50 and 25 μF respectively. Calculate:
 - i) Charge on each capacitor when connected in parallel to a 250V supply. [2marks]
 - ii) The total capacitance

[1 mark]

iii) P,d across each when connected in series.

[2 marks]

QUESTION THREE [20 MARKS]

- a) In a given R-L circuit, $R=3.5\Omega$ and L=0.1H. find
 - i) The current through the circuit

[3 marks]

ii) The power factor if a 50-Hz voltage $V=250 \ge 30^{\circ}$ is applied across the circuit.

[5 marks]

- b) A resistance of 20 ohms, inductance of 0.2H and a capacitance of $150\mu F$ are connected in series across 230V, 50Hz supply. Find:
 - i) X_L ii) X_Q
- ii) X_C iii) Z iv) power factor
- v) Active power

vi) Reactive power

[12 marks]

QUESTION FOUR [20 MARKS]

a) Using Kirchhoff's laws, calculate the current in each branch of the network of Figure 5 below: [10 marks]

Figure 5

- b) A parallel circuit consists of a 200-ohm resistor, an inductance of reactance 100 ohm and a capacitor of reactance 80 ohm across 120V ac source. Determine:
 - ii) The branch currents
 - iii) The total current
 - iv) The impedance

[10 marks]

Figure 6

QUESTION FIVE [20 MARKS]

a) Using node voltage method, find the current through the 3-ohm resistor for the network shown in Figure 7. [8 marks]

Figure 7

b) Find and solve the node equations of the network of Figure 8. Hence find the power consumed by the passive elements of the network. [12 marks]

Figure 8