

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2020/2021 ACADEMIC YEAR
FIRST YEAR FIRST SEMESTER
MAIN EXAMINATION

FOR THE DEGREE OF EDUCATION AND BACHELOR OF SCIENCE

COURSE CODE: MAA 111

COURSE TITLE: DIFFERENTIAL CALCULUS/CALCULUS I

DATE: 12/5/2021 TIME: 2:00 P.M - 4:00P.M

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE COMPULSORY (30 MARKS)

- (a) Define the following terms
 - (2 mks) A function (i)
 - (2 mks)(ii) Range of a function
 - (2 mks) A stationary point (iii)
- (b) Find the domain and the range of the function $f(x) = \sqrt{x-6}$ (2 mks)
- (c) Evaluate the following limits;
 - $\lim_{x\to 3} \frac{x-3}{\frac{1}{x}-\frac{1}{x}}$ (4mks) (i)
 - $\lim_{x \to \infty} \frac{2x^3 + 4x 3}{\sqrt{x^6 \frac{2}{x}}}$ (3 mks)
- (d) Given the function $y = \ln(x^3 2x^2 + x)$, determine y^{II} (4 mks)
- (e) If $g(x) = \frac{x}{x-5}$ and $h(x) = 2x^2 x 3$ find
 - (2 mks)goh (i)
 - (2 mks) (ii) hog
- (2 mks) (f) (i) State the Rolle's theorem
 - (ii) Determine whether the function $f(x) = x^2 3x + 4$ satisfy the condition of Rolle's theorem on the interval (0,3). If so find the number c that satisfy the (5mks) conclusion of Rolle's theorem.

QUESTION TWO (20 MARKS)

- (a) Prove that $\lim_{x \to -3} (\frac{1}{3}x + 3) = 2$ (b) Given $y = 2secx^4$ find $\frac{dy}{dx}$ (5mks)
- (4 mks)
- (c) Find $\frac{d^2y}{dx^2}$ given that $x(t) = \frac{1}{3}t^3 \frac{1}{2}t^2 + 2t 4$, $y(t) = 2t^2 4$ (5mks)
- (d) Mwangi wishes to enclose his rectangular land with 1200M of barbed wire of which one of the longest side is a wall. Determine the dimension (6 mks) the dimensions that will maximize the area enclosed.

QUESTION THREE (20 MARKS)

(a) Determine whether each of the following functions is even, odd or neither

(i)
$$f(x) = x^3 + x$$
 (2 mks)

(ii)
$$g(x) = x - x^6$$
 (2 mks)
(iii) $h(x) = 2x - 5x^2$ (2 mks)

(iii)
$$h(x) = 2x - 5x^2$$
 (2 mks)

(b) Given the equation $y = \frac{1}{4}x^4 - \frac{2}{3}x^3 - 4.5x^2 + 18x + 6$

QUESTION FOUR (20 MARKS)

(a) If
$$y = e^{-x} \cos x$$
 prove that $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 0$ (10 mks)

(b) Prove that
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
 (10 mks)

QUESTION FIVE (20 MARKS

(a) Determine if the following function is continuous at x = 4

$$f(x) = \begin{cases} x^2 - 3 & x < 4\\ 13 & x = 4\\ \frac{3x+4}{2} + 5 & x > 4 \end{cases}$$
 (5 mks)

(b) Find the equation of the normal to the curve $x^2y - 3xy + 7x = 11$ (7 mks)

(c) The position of a stone projected vertically upwards at any time t is given by $S = 2t^2 - \frac{1}{3}t^3 + 10$

(ii) Acceleration of the stone at
$$t = 4$$
 seconds (3 mks)