

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021ACADEMIC YEAR

FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF MASTERS (PHYSICS)

COURSE CODE: SPH 810

COURSE TITLE: CLASSICAL MECHANICS

DURATION: 2 HOURS

DATE: 14TH JUNE, 2021 TIME: 8.00A.M - 10.00A.M

INSTRUCTIONS TO CANDIDATES

- Answer **any three** (3) Questions.

Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page

This paper consists of 2 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE [20 Marks]

a) Illustrate the importance of action angle variables [3Marks] b) Using the action-angle formalism, proof that the frequency, ν of a simple onedimensional harmonic oscillator is given by; [4Marks] $v = \frac{\sqrt{k/m}}{2\pi}$ c) Using an example, illustrate the necessary and sufficient conditions for a transformation to be canonical [6Marks] d) Derive the time-dependent HJ equations [4Marks] e) Define Hamilton's principle and explain it [3Marks] **QUESTION TWO [20 Marks]** a) What is the main problem of calculus of variation? [2 Marks] b) Show that the shortest distance between two points in a plane is a straight line the two ioints [9 Marks] c) Derive an expression of the minimum surface area of revolution [9 Marks] **QUESTION THREE [20 Marks]** The Hamiltonian of a physical system is given by; $H = \omega^2 p(q+t)^2$. Where ω is a constant. Determine q as a function of time [14 Marks] b) Prove that the following transformation is canonical: $P = \frac{1}{2}(p^2 + q^2); Q = tan^{-1}(\frac{q}{p})$ [6 Marks] **QUESTION FOUR [20 Marks]** a) Derive the Langranges equation [10Marks] b) Set up the langrangian of a simple pendulum and obtain an equation describing its motion

[10Marks]

QUESTION FVE [20 Marks]

- a) Write the Hamiltonian for the 1-dimensional harmonic oscillator of mass, m [6Marks]
- b) Write the corresponding Hamilton-Jacobi equation [2Marks]
- c) Use the Hamilton-Jacobi equation method to obtain the motion of the oscillator

[12Marks]

THIS IS THE LAST PRINTED PAGE