International Journal of Mathematics And its Applications

On N Quasi D-Operator Operators

Wanjala Victor ${ }^{1, *}$ and A. M. Nyongesa ${ }^{1}$
1 Department of Mathematics, Kibabii University, Bungoma, Kenya.

Abstract

In this paper, we introduce the class of N quasi D-operator acting on the usual Hilbert space H over the complex plane. An operator T is said to be an N quasi D-operator if $T\left(T^{* 2}\left(T^{D}\right)^{2}\right)=N\left(T^{*} T^{D}\right)^{2} T$, where N is a bounded operator on H . We investigate the basic behavior of this class of operator.

Keywords: Normal operators, D-Operator, Almost Class (Q), quasi-class (Q) operators, N quasi D-operator. (C) JS Publication.

1. Introduction

H denotes the superable complex Hilbert space in this paper, while $B(H)$ is the usual Banach algebra of all bounded linear operators on H . Let $T \in B(H)$, Drazin inverse of T is an operator $T^{D} \in B(H)$, such that $T T^{D}=T^{D} T, T^{D}=T^{D} T T^{D}$ and $T^{k+1} T^{D}=T^{k}$ provided it exists. An operator $T \in B(H)$ is said to be D-Operator if $T^{* 2}\left(T^{D}\right)^{2}=\left(T^{*} T^{D}\right)^{2}[1]$, class (Q) if $T^{* 2} T^{2}=\left(T^{*} T\right)^{2}$ [4], M Quasi class (Q) if $T\left(T^{* 2} T^{2}\right)=M\left(T^{*} T\right)^{2} T$ [5], Quasi class (Q) if $T\left(T^{* 2} T^{2}\right)=\left(T^{*} T\right)^{2} T$, N quasi D-Operator if $T\left(T^{* 2}\left(T^{D}\right)^{2}\right)=N\left(T^{*} T^{D}\right)^{2} T$, for a bounded linear operator N. Let $T=\xi+i \zeta$, with $\xi=\operatorname{Re}(T)=\frac{T^{D}+T^{*}}{2}$ and $\zeta=\operatorname{Im}(T)=\frac{T^{D}-T^{*}}{2 i}$. We shall simply denote $U^{2}=\left(T^{*} T^{D}\right)^{2}$ and $V^{2}=T^{* 2}\left(T^{D}\right)^{2}$ where C and V are non-negative definite.

2. Main Results

Definition 2.1. Let $T \in B(H)$ be Drazin invertible, an operator T is called N Quasi D-Operator if $T\left(T^{* 2}\left(T^{D}\right)^{2}\right)=$ $N\left(T^{*} T^{D}\right)^{2} T$ where N is a bounded operator on H.

Theorem 2.2. Let $T \in B(H)$ and let V commute with ξ and ζ such that $V^{2} T=N U^{2} T$, it follows that T is an N quasi D-operator.

Proof. We recall that $T=\xi+i \zeta$, with $\xi=\operatorname{Re}(T)=\frac{T^{D}+T^{*}}{2}$ and $\zeta=\operatorname{Im}(T)=\frac{T^{D}-T^{*}}{2 i}$ and $U^{2}=\left(T^{*} T^{D}\right)^{2}$ and $V^{2}=T^{* 2}\left(T^{D}\right)^{2}$. Since $V \xi=\xi V$ and $U \zeta=\zeta U$, we have; $V^{2} \xi=\xi V^{2}$ and $U^{2} \zeta=\zeta U^{2}$, thus

$$
\begin{aligned}
& V^{2} T+V^{2}(T)^{*}=T V^{2}+(T)^{*} V^{2} \\
& V^{2} T-V^{2}(T)^{*}=T V^{2}-(T)^{*} V^{2}
\end{aligned}
$$

[^0]implies $T V^{2}=V^{2} T$. Hence;
\[

$$
\begin{aligned}
T\left(T^{* 2}\left(T^{D}\right)^{2}\right) & =\left(\left(T^{*}\left(T^{*} T^{D}\right) T^{D}\right) T\right. \\
& =\left(T^{*} T^{D}\right)^{2} T . \\
T U^{2} & =N U^{2} T \\
\Rightarrow T\left(T^{* 2}\left(T^{D}\right)^{2}\right) & =N\left(\left(T^{*}\left(T^{*} T^{D}\right) T^{D}\right) T\right. \\
T\left(T^{* 2}\left(T^{D}\right)^{2}\right) & =N\left(T^{*} T^{D}\right)^{2} T
\end{aligned}
$$
\]

Hence T is an N Quasi D-Operator.
Proposition 2.3. Let $T \in B(H)$ be a D-operator where $V^{2} \xi=\frac{1}{N} \xi V^{2}$ and $V^{2} \zeta=\frac{1}{N} \zeta V^{2}$, then T is an N Quasi D-Operator.
Proof. $V^{2} \xi=\frac{1}{N} \xi V^{2}$ and $V^{2} \zeta=\frac{1}{N} \zeta V^{2}$ implies

$$
\begin{aligned}
V^{2}(\xi+i \zeta) & =\frac{1}{N}(\xi+i \zeta) V^{2} \\
V^{2} T & =\frac{1}{N} T V^{2} \\
\left(T^{*}\left(T^{*} T^{D}\right) T^{D}\right) T & =\frac{1}{N} T\left(T^{*}\left(T^{*} T^{D}\right) T^{D}\right) \\
T\left(T^{*}\left(T^{*} T^{D}\right) T^{D}\right) & =N\left(T^{*}\left(T^{*} T^{D}\right) T^{D}\right) T \\
& =N\left(T^{*} T^{D}\right)^{2} \quad \text { (Since T is a D-operator). }
\end{aligned}
$$

Hence T is an N Quasi D-Operator.

Theorem 2.4. Let T_{α} and T_{β} be two N Quasi D-Operators from $B(H, H)$ such that $T_{\alpha}^{D} T_{\beta}^{* 2}=T_{\beta}^{D} T_{\alpha}^{* 2}=T_{\alpha}^{* 2}\left(T_{\beta}^{D}\right)^{2}=$ $T_{\beta}^{* 2}\left(T_{\alpha}^{D}\right)^{2}=0$, then $T_{\alpha}+T_{\beta}$ is an N Quasi D-Operator.

Proof. Since T_{α} and T_{β} are N Quasi D-Operators, we have;

$$
\begin{aligned}
\left(T_{\alpha}+T_{\beta}\right)\left[\left(T_{\alpha}+T_{\beta}\right)^{* 2}\left(T_{\alpha}^{D}+T_{\beta}^{D}\right)^{2}\right] & =\left(T_{\alpha}+T_{\beta}\right)\left[\left(T_{\alpha}^{* 2}+T_{\beta}^{* 2}\right)\left(\left(T_{\alpha}^{D}\right)^{2}+\left(T_{\beta}^{D}\right)^{2}\right)\right. \\
& =\left(T_{\alpha}+T_{\beta}\right)\left[T_{\beta}^{* 2}\left(T_{\alpha}^{D}\right)^{2}+T_{\beta}^{* 2}\left(T_{\beta}^{D}\right)^{2}+T_{\alpha}^{* 2}\left(T_{\alpha}^{D}\right)^{2}+T_{\alpha}^{* 2}\left(T_{\beta}^{D}\right)^{2}\right] \\
& =\left(T_{\alpha}+T_{\beta}\right)\left[T_{\beta}^{* 2}\left(T_{\beta}^{D}\right)^{2}+T_{\alpha}^{* 2}\left(T_{\alpha}^{D}\right)^{2}\right] \text { since } T_{\beta}^{* 2}\left(T_{\alpha}^{D}\right)^{2}=T_{\alpha}^{* 2}\left(T_{\alpha}^{D}\right)^{2}=0 \\
& =\left(T_{\alpha}+T_{\beta}\right)\left[T_{\beta}^{* 2}\left(T_{\beta}^{D}\right)^{2}+T_{\alpha}^{* 2}\left(T_{\alpha}^{D}\right)^{2}\right] \\
& =T_{\alpha} T_{\alpha}^{* 2}\left(T_{\alpha}^{D}\right)^{2}+T_{\beta} T_{\beta}^{* 2}\left(T_{\beta}^{D}\right)^{2} \text { since } T_{\alpha} T_{\beta}^{* 2}\left(T_{\beta}^{D}\right)^{2}=T_{\beta} T_{\alpha}^{* 2}\left(T_{\alpha}^{D}\right)^{2}=0 \\
& =N\left(T_{\alpha}^{* 2}\left(T_{\alpha}^{D}\right)^{2}\right) T_{\alpha}+N\left(T_{\beta}^{* 2}\left(T_{\beta}^{D}\right)^{2}\right) T_{\beta} \\
& =N\left(T_{\alpha}^{*} T_{\alpha}^{D}\right)^{2} T_{\alpha}+N\left(T_{\beta}^{*} T_{\beta}^{D}\right)^{2} T_{\beta}
\end{aligned}
$$

Thus $T_{\alpha}+T_{\beta}$ is an N Quasi D-Operator.
Theorem 2.5. Let T_{α} and T_{β} be two N Quasi D-Operators from $B(H, H)$ such that $T_{\alpha}^{D} T_{\beta}^{* 2}=T_{\beta}^{D} T_{\alpha}^{* 2}=T_{\alpha}^{* 2}\left(T_{\beta}^{D}\right)^{2}=$ $T_{\beta}^{* 2}\left(T_{\alpha}^{D}\right)^{2}=0$, then $T_{\alpha}-T_{\beta}$ is an N Quasi D-Operator.

Proof. The proof follows from Theorem 2.4 above.

Theorem 2.6. Let T_{α} and T_{β} be two N Quasi D-Operators, then $T_{\alpha} T_{\beta}$ is an N Quasi D-Operator provided $T_{\alpha} T_{\beta}=T_{\beta} T_{\alpha}$ and $\left(T_{\alpha}^{D}\right)^{2} T_{\beta}^{* 2}=T_{\beta}^{* 2}\left(T_{\alpha}^{D}\right)^{2}$.

Proof. Since T_{α} and T_{β} are N Quasi D-Operators, we have;

$$
\begin{aligned}
\left(T_{\alpha} T_{\beta}\right)\left[\left(T_{\alpha} T_{\beta}\right)^{* 2}\left(\left(T_{\alpha} T_{\beta}\right)^{D}\right)^{2}\right] & =\left(T_{\alpha} T_{\beta}\right)\left[\left(T_{\alpha}^{* 2} T_{\beta}^{* 2}\right)\left(T_{\alpha}^{D} T_{\beta}^{D}\right)^{2}\right] \\
& =\left(T_{\alpha} T_{\beta}\right)\left[\left(T_{\beta}^{* 2} T_{\alpha}^{* 2}\right)\left(T_{\alpha}^{D} T_{\beta}^{D}\right)^{2}\right] \\
& =T_{\alpha}\left(T_{\beta} T_{\alpha}^{* 2}\right)\left(T_{\beta}^{* 2}\left(T_{\alpha}^{D}\right)^{2}\right)\left(T_{\beta}^{D}\right)^{2} \\
& =T_{\alpha}\left(T_{\alpha}^{* 2} T_{\beta}\right)\left(T_{\beta}^{* 2}\left(T_{\alpha}^{D}\right)^{2}\right)\left(T_{\beta}^{D}\right)^{2} \\
& =T_{\alpha} T_{\alpha}^{* 2} T_{\beta}\left(T_{\alpha}^{D}\right)^{2} T_{\beta}^{* 2}\left(T_{\beta}^{D}\right)^{2} \\
& =T_{\alpha} T_{\alpha}^{* 2}\left(T_{\alpha}^{D}\right)^{2} T_{\beta} T_{\beta}^{* 2}\left(T_{\beta}^{D}\right)^{2} \\
& =N\left(T_{\alpha}^{* 2}\left(T_{\alpha}^{D}\right)^{2}\right) T_{\alpha} N\left(T_{\beta}^{* 2}\left(T_{\beta}^{D}\right)^{2}\right) T_{\beta} \\
& \left.=N\left(T_{\alpha}^{* 2}\left(\left(T_{\alpha}^{D}\right)^{2} T_{\alpha}\right)\left(T_{\beta}^{* 2}\left(T_{\beta}^{D}\right)^{2}\right)\right) T_{\beta}\right) \\
& =N\left(T_{\alpha}^{* 2}\left(T_{\alpha}^{D}\right)^{2} T_{\beta}^{* 2} T_{\alpha}\left(T_{\beta}^{D}\right)^{2} T_{\beta}\right) \\
& =N\left(T_{\alpha}^{* 2} T_{\beta}^{* 2}\left(T_{\alpha}^{D}\right)^{2}\left(T_{\beta}^{D}\right)^{2} T_{\alpha} T_{\beta}\right) \\
& =N\left[\left(T_{\alpha} T_{\beta}\right)^{* 2}\left(T_{\alpha}^{D} T_{\beta}^{D}\right)^{2}\left(T_{\alpha} T_{\beta}\right)\right] \\
& \left.=N\left[\left(T_{\alpha} T_{\beta}\right)^{* 2}\left(\left(T_{\alpha} T_{\beta}\right)^{D}\right)\right)^{2}\left(T_{\alpha} T_{\beta}\right)\right] \\
& =N\left[\left(T_{\alpha} T_{\beta}\right)^{*}\left(T_{\alpha} T_{\beta}\right)^{D}\right]^{2}\left(T_{\alpha} T_{\beta}\right)
\end{aligned}
$$

Thus $T_{\alpha} T_{\beta}$ is N Quasi D-Operator.

Theorem 2.7. Power of N Quasi D-operator is similarly N Quasi D-operator.

Proof. We first show that the result holds for some $p=1$, then we have ;

$$
\begin{equation*}
T\left(T^{* 2}\left(T^{D}\right)^{2}\right)=N\left(T^{*} T^{D}\right)^{2} T \tag{1}
\end{equation*}
$$

Suppose the result holds for $p=n$, we have;

$$
\begin{equation*}
\left[T\left(T^{* 2}\left(T^{D}\right)^{2}\right)\right]^{n}=\left(N\left(T^{*} T^{D}\right)^{2} T\right)^{n} \tag{2}
\end{equation*}
$$

We then prove that the result is true for $p=n+1$. We have;

$$
\begin{align*}
{\left[T\left(T^{* 2}\left(T^{D}\right)^{2}\right)\right]^{n+1} } & =\left(N\left(T^{*} T^{D}\right)^{2} T\right)^{n+1} \tag{3}\\
{\left[T\left(T^{* 2}\left(T^{D}\right)^{2}\right)\right]^{n+1} } & =\left[N T\left(T^{* 2}\left(T^{D}\right)^{2}\right)\right]^{n}\left[N T\left(T^{* 2}\left(T^{D}\right)^{2}\right)\right] \tag{4}\\
& =\left[N\left(T^{*}\left(T^{D}\right)\right)^{2} T\right]^{n}\left[N\left(T^{*}\left(T^{D}\right)\right)^{2} T\right] \text { by (1) and (2) } \\
{\left[T\left(T^{* 2}\left(T^{D}\right)^{2}\right)\right]^{n+1} } & =\left[N\left(T^{*}\left(T^{D}\right)\right)^{2} T\right]^{n+1} \tag{5}
\end{align*}
$$

Hence the proof as required.

References

[1] Abood and Kadhim, Some properties of D-operator, Iraqi Journal of Science, 61(12)(2020), 3366-3371.
[2] S. R. Campbell and C. D. Meyer, Generalized inverses of linear transformations, Pitman, New York, (1991).
[3] M. Dana and R. Yousefi, On the classes of D-normal operators and D-quasi normal operators on Hilbert space, Operators and Matrices, 12(2)(2018), 465-487.
[4] A. A. S. Jibril, On Operators for which $T^{* 2}(T)^{2}=\left(T^{*} T\right)^{2}$, International Mathematical Forum, 5(46)(2010), 2255-2262.
[5] V. Revathi and P. Maheswari Naik, A study on properties of M quasi-class (Q) operator, International Journal of Advance Research, Ideas and Innovations in Technology, 5(5)(2019), 387-390.

[^0]: * E-mail: wanjalavictor421@gmail.com

