

International Journal of Mathematics And its Applications

On Some generalization of Unitary Quasi-Equivalence of Operators

Wanjala Victor^{1,*} and A. M. Nyongesa¹

1 Department of Mathematics, Kibabii University, Bungoma, Kenya.

Abstract: In this paper, we generalize the class of Unitary Quasi-Equivalence by extending this study to n-Unitary Quasi-Equivalence and investigate the properties of this class. We investigate the relation of this equivalence class to other relations.

Keywords: Unitary Quasi-Equivalence, n-metric equivalence, n-unitary Quasi-Equivalence, n-normal operators.

1. Introduction

Throughout this paper, H is a separable complex Hilbert space, B(H) is the Banach algebra of all bounded linear operators. $T \in B(H)$ is normal if $T^*T = TT^*$, n-normal if $T^*T^n = T^nT^*$, projection if $T^2 = T$, hyponormal if $T^*T \ge TT^*$, quasinormal if $T(T^*T) = (T^*T)T$, n-hyponormal if $T^*T^n \ge T^nT^*$. Two operators $S, T \in B(H)$ are said to be Metrically equivalent if $S^*S = T^*T$ for more on this refer to [3], n-metrically equivalent if $S^*S^n = T^*T^n$ we refer the reader to [7] for more, Unitarily Quasi-Equivalent if there exists a unitary operator $U \in B(H)$ such that $S^*S = UT^*TU^*$ and $SS^* = UTT^*U^*$ [1] and nearly equivalent if $S^*S = UT^*TU^*$ [6]. Two operators $S, T \in B(H)$ are said to be n-Unitarily Quasi-Equivalent if there exists a unitary operator $U \in B(H)$ such that $S^*S^n = UT^*T^nU^*$ and $S^nS^* = UT^nT^*U^*$ for any positive integer n. We note that n-Unitarily Quasi-Equivalent operators are Unitarily Quasi-Equivalent operators when n = 1.

2. Main Results

Theorem 2.1. n-Unitary Quasi-Equivalence is an equivalence relation.

Proof. Let $S, T, P \in B(H)$. S is n-Unitarily Quasi-Equivalent to S since $S^*S^n = IS^*S^nI^*$ and $S^nS^* = IS^nS^*I^*$ for I = U. If S is n-Unitarily Quasi-Equivalent to T, then $S^*S^n = UT^*T^nU^*$ and $S^nS^* = UT^nT^*U^*$. Pre-multiplying and post-multiplying the two equations by U^* and U on both sides we end up with $T^*T^n = US^*S^nU^*$ and $T^nT^* = US^nS^*U^*$. Hence T is n-Unitarily Quasi-Equivalent to S. We now have to show that if S is n-Unitarily Quasi-Equivalent to T and T is n-Unitarily Quasi-Equivalent to P, then S is n-Unitarily Quasi-Equivalent to P. Now $S^*S^n = UT^*T^nU^*$ and $S^nS^* = UT^nT^*U^*$ and $T^*T^n = VP^*P^nV^*$ and $T^nT^* = VP^nP^*V^*$, where U and V are unitary operators. Then $S^*S^n = UT^*T^nU^* = UVP^*P^nV^*U^* = QP^*P^nQ^*$, for Q = UV, which is unitary. Equally $S^nS^* = UT^nT^*U^* = UVP^nP^*V^*U^* = QP^nP^*Q^*$,

^{*} E-mail: wanjalavictor421@gmail.com

for Q = UV which is unitary. This shows that S is n-Unitarily Quasi-Equivalent to P and hence n-Unitary Quasi-Equivalence is an equivalence relation.

Theorem 2.2. Let $S, T \in B(H)$ be n-unitarily Quasi-equivalent. Then S is n-normal if and only if T is n-normal.

Proof. Suppose that S and T are n-unitarily quasi-equivalent and also suppose that S is n-normal, then $T^*T^n = US^*S^nU^*$ and $T^nT^* = US^nS^*U^*$. Hence $T^*T^n = US^*S^nU^* = US^nS^*U^* = T^nT^*$. The converse is proved in the similar way.

Lemma 2.3. Two operators $S, T \in B(H)$ are n-unitarily Quasi-equivalent if and only if $S^*S^n - S^nS^* = U(T^*T^n - T^nT^*)U^*$.

Theorem 2.4. Let $S, T \in B(H)$ be n-unitarily Quasi-equivalent. Then S is n-hyponormal if and only if T is n-hyponormal.

Proof. The proof follows from Lemma , $S^*S^n - S^nS^*$ is unitarily equivalent to $T^*T^n - T^nT^*$. If $S^*S^n - S^nS^* \ge 0$, then $T^*T^n - T^nT^* = U(S^*S^n - S^nS^*)U^* \ge 0$. This shows that n-Unitary quasi-equivalence preserves n-hyponormality.

We note that n-unitary quasi-equivalence preserves n-quasinormality and n-binormality of operators, this follows from Theorem 2.4, and the fact that these classes are contained in the class of n-hyponormal operators.

Lemma 2.5. $T \in B(H)$ is n-unitarily equivalent to a unitary operator if and only if it is a unitary operator.

Proof. Suppose that $T^n = PU^n P^*$, where $U, P \in B(H)$ are unitary operators. Then, we have $T^*T^n = PU^*P^*PU^nP^* = I$ and $T^nT^* = PU^nP^*PU^*P^* = I$.

Lemma 2.5 can be extended to the class of n-unitarily Quasi-equivalent of operators.

Theorem 2.6. $T \in B(H)$ is n-unitarily Quasi-equivalent to a unitary operator if and only if it is a unitary operator.

Proof. Let $T \in B(H)$ is n-unitarily Quasi-equivalent to a unitary operator $P \in B(H)$, then there exists a unitary operator $U \in B(H)$ such that $T^*T^n = U(P^*P^n)U^* = I$ and $T^nT^* = U(P^nP^*)U^* = I$. This implies that $T^*T^n = T^nT^*$.

The converse follows from Lemma 2.5.

Theorem 2.7. If $S, T \in B(H)$ are both Self and 2-Unitarily quasi-equivalent, then S^3 and T^3 are unitarily equivalent.

Proof. The proof follows directly from the definitions; $S^*S^2 = UT^*T^2U^*$ and $S^2S^* = UT^2T^*U^*$, then using the self adjoint property of S and T we have; $S^3 = UT^3U^*$. Hence the proof.

Theorem 2.8. Let $S, T \in B(H)$ be n-unitarily Quasi-equivalent. Then $||S^n|| = ||T^n||$.

Proof. $||S^n||^2 = ||S^*S^n|| = ||UT^*T^nU^*|| = ||T^*T^n|| = ||T^n||^2$. Taking square root on both sides of the equation we get the intended result.

Proposition 2.9. Let $T \in B(H)$, then we have

(i). $Ker(T^*T^n) = Ker(T^n)$.

(*ii*).
$$\overline{Ran(T^nT^*)} = \overline{Ran(T^n)}$$
.

Proof.

(i). $Ker(T^*T^n) = \{\xi \in H : T^*T^n\xi = 0\}$ = $\{\xi \in H : T^n\xi = 0\}$ = $Ker(T^n)$

250

(ii). $\overline{Ran(T^nT^*)} = \overline{\{\xi \in H : \xi = T^nT^*x, x \in H\}}$ $= \overline{\{\xi \in H : \xi = T^n(T^*x)\}}$ $= \overline{Ran(T^n)}.$

Theorem 2.10. If $S, T \in B(H)$ are n-unitarily Quasi-equivalent, then $Ker(S^n) = Ker(T^n)$ and $\overline{Ran(||S^n||)} = \overline{Ran(||T^n||)}$.

Proof. The proof follows from Proposition 2 and the definition of n-unitary quasi-equivalence of operators. \Box

Corollary 2.11. If $S, T \in B(H)$ are n-unitarily Quasi-equivalent and S^n is injective, then T^n is injective.

We note that n-unitarily quasi-equivalence unlike n-metric equivalence preserves injectivity of operators.

References

- Benard Mutuku Nzimbi and Stephen Wanyonyi Luketero, On unitary Quasi-Equivalence of Operators, International Journal of Mathematics And its Applications, 8(1)(2020), 207-215.
- [2] A. A. Jibril, On n-power normal operators, The Arabian Journal for Science and Engineering, 33(2008), 247-251.
- [3] B. M. Nzimbi, G. P. Pokhariyal and S. K. Moindi, A Note on Metric Equivalence of some Operators, Far East J. F Math. Sci. (FJMS), 75(2013), 301-318.
- [4] Mahmoud Kutkut, On quasiequivalent operators, Bull. Cal. Math. Soc., 90(1998), 45-52.
- [5] S. A. Alzuraiqi and A. B. Patel, On n-Normal Operators, General mathematics Notes, 1(2)(2010), 61-73.
- [6] Sadoon Ibrahim, Nearly equivalent operators, Math. Bohem., 212(2)(1996), 133-141.
- [7] Wanjala Victor, R. K. Obogi and M. O. Okoya, On N-Metric equivalence of Operators, International Journal of Mathematics And its Applications, 8(1)(2020), 107-109.