

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF BUSINESS ADMINISTRATION.

COURSE CODE: BCO 105

COURSE TITLE: BUSINESS MATHEMATICS

DATE: 19.11.2020

TIME: 2-5PM

INSTRUCTIONS TO CANDIDATES

Answer Question One in Section A and Any other TWO (2) Questions in Section B

TIME: 2 Hours

KIBU observes ZERO tolerance to examination cheating

This Paper Consists of 2 Printed Pages. Please Turn Over.

QUESTION ONE

a) Using the following linear function draw a line graph

$$y = 1.5 + 3x^2$$
 $(-4 < x < 5)$

10 marks

b) Work out the following

i)
$$81 = 3^{x-2}$$
 2 marks

- Two points of a line are given as (-3,-2) and (21,-14) determine the slope of the function. ii) 2 marks
- c) Alice saved sh.112,000 for three years at 2.5% compounded quarterly annually. How much will Alice withdraw from her bank at maturity? 5 marks
- d) Find the value of the unknowns in the pair of equations below.

$$4x - y = 6$$

$$5 x - 3y = 4$$

5 marks

e) Work out the following

2 marks

Log (2.73) 4 ii)

2 marks

The cost in shillings, C (x), of manufacturing X picture frames, where X is measured in iii) thousands, is

$$C(x) = 5000 + 2000 \log(x+1)$$
.

Find the cost of manufacturing 19000 frames.

(2 marks)

QUESTION TWO

a) Solve the system of three equations below using elimination.

$$X + 3y + 2y = 1$$

$$2X + y - Z = 2$$

$$X+y + Z = 2$$

(9 marks)

- b) Graph the inequality X + 4y > 4(5 marks)
- c) Use a matrix to solve the system

$$2x - 3y = 4$$

$$X + 5y = 2$$

(6 marks)

QUESTION THREE

a) Plot the graph of the quadratic function below.

$$F(x) = -2/x$$

From the graph find the three x intercepts. $-4 \le x \le 4$

(10 marks)

- b) Find the present value of a debt of sh.25000 taken out over 3 years where the borrowing rate is 14.5% and the discount rate is 9.5% (5 marks).
- c) Solve $(1/3)^x = 81$

(3 marks)

QUESTION FOUR

a) The revenue of a charter bus company depends on the number of unsold seats. If revenue R(x), is given by

$$R(x) = 5000 + 50x - x^2,$$

Where X is the number of unsold seats, find the maximum revenue and the number of unsold seats which produce maximum revenue.

(8 marks)

- b) Differentiate between a null and a universal set (4 marks)
- c) Suppose you start a kiosk business with the following plan. You buy two products for a start-credit cards and soda. You can order no more than a total of 500 cards and spend no more than sh.600.
 - i) 12 cards per stack, you pay sh.24 per stack and sell at sh.3.50 per card.
- ii) 20 crates of soda, paying sh.150 per crate and selling at sh.25 per bottle. Using inequalities show how you can maximize profit. (8 marks)