



# KIBABII UNIVERSITY

# UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BED (SCIENCE)

COURSE CODE:

**SCH 411** 

COURSE TITLE:

**QUANTUM CHEMISTRY** 

**DURATION: 3 HOURS** 

DATE: 10TH NOVEMBER, 2020

TIME: 2:00PM-5:00PM

#### INSTRUCTIONS TO CANDIDATES

Answer QUESTION ONE (Compulsory) and any other two (2) Questions.

Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page.

This paper consists of 4 printed pages. Please Turn Over



KIBU observes ZERO tolerance to examination cheating

#### **Useful Information**

R=  $8.314 \text{ JK}^{-1} \text{ mol}^{-1} \text{ or } 0.08206 \text{ L atmK}^{-1} \text{mol}^{-1}$   $1 \text{ atm} = 1.01325 \text{ bar} = 760 \text{ ton} = 1.01325 \text{ x } 10^5 \text{ Pa} = 760 \text{mmHg}$  $e = 1.60217662 \text{ x } 10^{-19} \text{ C}$ 

IJ=CV=IKgm<sup>2</sup>s-<sup>2</sup>

 $h=6.626x10^{-34} Js$ 

 $N_A = 6.022 \text{ X} 10^{23} / \text{molecules}$ 

#### QUESTION ONE (30 MARKS)

a) Define the following terms as used in quantum chemistry

[8 marks]

- i. Wave-function
- ii. Photo electric effect
- iii. Wave-particle duality
- iv. Black body
- b) Calculate the minimum uncertainty in the velocity of an electron if the uncertainty in its position is 100pm [5 marks]
- c) Calculate the wavelength of the line with n=5 in the Balmer series of the spectrum of atomic hydrogen. [5 marks]
- d) What is the ground state energy for an election that is confined to a potential well with a width of 0.2 nm? [5 marks]
- e). What is the de-Broglie wavelength of an electron that has been accelerated through a potential difference of 100v. [5 marks]
- f) State two basic principle of classical mechanic

[2 marks]

### **QUESTION TWO (20 MARKS)**

a). Derive the Schrödinger's Wave Equation as used in quantum chemistry

[10marks]

b). State significance of the Schrödinger's Wave Equation

[6marks]

c). Explain the meaning of  $\Psi^{2} and \ \Psi$ 

[4marks]

## **QUESTION THREE (20 MARKS)**

- a) Show that  $m \frac{d^2X}{d^2} + kX = 0$  also applies to mass m<sub>1</sub> connected to mass m<sub>2</sub> by a spring exhibiting harmonic motion [6 marks]
- b) Normalize the molecular orbital  $\Psi$ =N(A-B) state the meaning of the overlap integral S in this probability of this wave function. [6 marks]
- c) What is the Ritzs combination principle

[4marks]

d) Calculate the ionization energy Ei for hydrogen like atom of H, He<sup>+</sup>, Li<sup>2+</sup>
And Be<sup>3+</sup> whose Ei=13.606 ev [4marks]

### **QUESTION FOUR (20 MARKS)**

a). Explain the five postulates of quantum mechanics

[10 marks]

b). What are the reduced mass and moment of inertia of HCl?. The equilibrium internuclear distance Re is 127.5pm. What are the values of L,  $L_Z$  and E for the state with j=1? Atomic masses of some of H=1.007825  $\cdot 10^{-3}$ kgmol<sup>-1</sup> and Cl<sup>35</sup>= 34.96885 $\cdot 10^{-3}$ kgmol<sup>-1</sup> and

h=1.054.10<sup>-34</sup> [10marks]

#### **QUESTION FIVE (20 MARKS)**

5a). State three modes of motion

[3 marks]

- b). Discuss the two main origins of zero-point energies for both particle in a box and the harmonic oscillators. Why can't n≠O while v=0 for a particle in a box and for a harmonic oscillator respectively.
- c). Calculate the most probable radius r at which an electron will be found when it occupies a 1s orbital of a hydrogen atom of atomic number Z and tabulate values 1 e<sup>-</sup> species from Hydrogen to Neon [6marks]
- d) Show that  $e^{ax}$  is an *Eigen* function of the operator d/dx and find corresponding *Eigen* value. Also show that  $e^{ax^2}$  is non an *Eigen* function of the same operator. [5marks]
- e). Draw the schematic diagram for the lowest energy molecular or orbital of Homo-nuclear diatomic molecules [3marks]

|  |  |  |  |  |  |  |  | I | 1 | V | I | ) | • | • | • |  | • |  |  |  | • | • |
|--|--|--|--|--|--|--|--|---|---|---|---|---|---|---|---|--|---|--|--|--|---|---|