

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2019/2020 ACADEMIC YEAR
FOURTH YEAR SECOND SEMESTER
MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE (MATHEMATICS)

COURSE CODE: MAT 402

COURSE TITLE: TOPOLOGY II

DATE: 11/11/2020 TIME: 9 AM -11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 2 Printed Pages. Please Turn Over.

QUESTION 1 (30 MARKS)

(a) Define	the	fol	lowing
------------	-----	-----	--------

(i) Second countable space (2mks)

(ii) T_1 space. (2mks)

(iii) Regular space. (2mks)

(iv) Connected spaces. (2mks)

(v) Sequential compactness (2mks)

(b) State without proof the Urysohn's lemma. (2mks)

(c) Prove that every subspace of T_1 is T_1 . (10mks)

(d) Prove that any compact Hausdorf space is normal. (6mks)

(e) Define a path in a topological space X. (2mks)

OUESTION 2 (20 MARKS)

(a) Prove that T_2 space is a T_1 space but the converse is not true. (10mks)

(b) Prove that every sub-space a T₂ space is also a T₂ space. (10mks)

QUESTION 3. (20 MARKS)

(a) Prove that an infinite set with co-finite topology is connected. (6mks)

(b) Let (X, τ) be a topological space. Show that $= (X, \tau)$ is disconnected if and only if 'X' contains non empty set A which is both open and closed. (7mks)

(c) Prove that a space X is connected if and only if there does not exist a surjective continuous function f from X onto the two point discrete space. (7mks)

QUESTION 4. (20 MARKS)

- (a) Prove that a metric space is compact if and only if it is sequentially compact. (14mks)
- (b) Let $f: X \to Y$ be a continuous map of topological spaces, with X compact. Prove that f(X) is compact. (6mks)

OUESTION 5. (20 MARKS)

Let (X, τ) be a topological space. Show that the following statements are equivalent.

- (a) X is T₁-space
- (b) Each singleton subset of X is closed.
- (c) Each subset A of X is the intersection of its open superset. (20mks)