

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2017/2018 ACADEMIC YEAR
FIRST YEAR SECOND SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN

STATISTICS

COURSE CODE:

STA 831

COURSE TITLE:

THEORY OF NONPARAMETRIC STATISTICS I

DATE:

08/10/18

TIME: 8 AM - 11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question ONE and any Other TWO Questions

TIME: 3 Hours

This Paper Consists of 5 Printed Pages. Please Turn Over.

- Q1). a). Explain the meaning of the following as applied in non-parametric statistical inference.
 - i). Non-parametric hypothesis
 - ii). Distribution-free statistics
 - iii). m-sample tests
 - iv). Problem of zeros in sign tests and their solution. (8 marks)
 - b). Let $S_n(x)$ denote the empirical distribution function for a continuous population with cumulative distribution function, F(x)
 - i). Show that $S_n(x)$ is unbiased consistent estimator of F(x)
 - ii). Define using $S_n(x)$, the Kolmogorov-Smirnov statistics D_n , D_n^+ and D_n^-
 - iii). Describe, with respect to the statistics stated in part b (ii), thecorresponding null and alternative hypotheses. (12 marks)
 - c). Consider the following data on an empirical distribution function $S_n(x)$ and a hypothesized distribution $F_0(x)$ on 25 subjects and selected values of a random variable X.

$$X=x$$
 1 4 10 25 60 80 100 $nS_n(x)$ 4 10 13 17 21 24 25 $nF_o(x)$ 2 5 9 16 17 19 25

Use the Kolmogorov-Smirnov two sided test procedure to test at 5% level of significance the hypothesis.

$$H_o F(x) = F_o(x)$$
 against $H_a:F(x) \neq F_o(x)$ (8 marks)

Q2. a). i). Define the Kruskal Wallis Statistic, H, for testing the null hypothesis

$$H_0: F_{x_1}(x) = F_{x_2}(x) = \dots F_{x_m}(x)$$

Versus

Ha: NOT Ho

where F_{x_j} (x) is the cumulative distribution function of population X_j for j=1, 2...., m

- ii) For m=2, state the corresponding Wilcoxon Rank Sum test statistic W_N (8 marks)
- b) State the distribution of the statistic

i)H

c) A researcher planted maize at the same rate in 8 small plots of ground, then weeded the maize rows by hand to allow no weeds in 4 randomly selected plots and exactly 3 lamb's-quarter weed plants per meter of row in the other 4 plots. The table below gives data on the yield of maize per acre in each of the plots.

Weeds per meter	Yield			
	166.7	172.2	165.0	176.9
3	158.6	176.4	153.1	156.0

Test

H₀: No difference in distribution of yields

Versus

H_a: Yields are systematically higher in weed- free plots

Using:

i)W_N

ii)H

(8 marks)

- Q3 a). State and prove the probability integral transform theorem
 - b). Show that if U(r) is the r^{th} order statistic from the uniform distribution on the interval (0,1), for r=1,2,...,n then

$$E(U_{(r)}^k) = \frac{\alpha(\alpha+1)\dots(\alpha+k-1)}{(\alpha+\beta)(\alpha+\beta+1)\dots(\alpha+\beta+k-1)}$$

where α = r-1 and β = n-r + 1

(6 marks)

- c). Using the results in part (b), or otherwise determine
 - i). E(U(r))

ii). Var (U(r))

(6 marks)

d). Show that if $X_{(r)}$ is the r-th order statistic from a continuous population with cumulative distribution function, F(x), then $E\left(U_{(r)}^k\right)\cong F^{-1}\left(\frac{r}{n+1}\right)$

(6 marks)

Q4. Consider the Wilcoxon's Signed Rank test statistic T_N^+ for testing

$$H_o: M = M_0$$

v/s $H_a:M \neq M_o$

where M is the population median and M_{o} is some known constant.

a). Define T_N^+

(5 marks)

b). Compute the exact probabilities;

$$P(T_8^+ \geq j)$$

for j = 33, 34, 35, 36

(7 marks)

- c). Using the results in part (b) or otherwise, determine the exact level of significance, α , for each of the following critical regions of the test.
 - i). Critical region = $\{T_8^+: T_8^+ \le 2 \text{ or } T_{10}^+ \ge 34\}$
 - ii). Critical region $\{T_8^+: T_8^+ = \le 3 \text{ or } T_{10}^+ \ge 33\}$

(8 marks)

- Q5. a). Let X_1, X_2, \dots, X_n be a random sample from a population with cumulative distribution function denoted by F(x).
 - i). Show that the confidence interval for the p-th percentile θ_p for some given confidence coefficient α , $0<\alpha<1$, is of the form $(X_{(r)},X_{(s)})$, r< s where $X_{(j)}$ is the j-th order statistic from the population,

- ii). Describe how the integers r and s can be determined. (10 marks)
- b). Let $U_{(r)}$ denote the r-th order statistic, $\, r = 1,2,.....,n$ from a uniform

distribution on the interval (0, 1). Let $Z_{(r)} = {U_{(r)} - \mu \choose \sigma}$ where $\mu = E(U_{(r)})$ and

 $\sigma^2 = Var(U(r))$. Show that $Z_{(r)} \xrightarrow{P} Z$ where Z has N(0, 1) distribution.

(10 marks)