

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN

STATISTICS

COURSE CODE:

STA 814

COURSE TITLE:

STATISTICAL INFERENCE I

DATE:

13/9/17

TIME: 2 PM -5 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 3 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- a) Define the following terms
 - (i) Bias
 - (ii) Unbiased
 - (iii) MSE
 - (iv) Efficiency
 - (v) Standard error
- b) (i) What is an exponential families distribution?
 - (ii) If X b(p, n) (binomial) distribution, show that it belongs to the exponential families. Hence obtain the mean and variance of X.
- c) Show that the estimator S^2 is a consistent estimator of δ^2
- d) Determine the Crammer Rao Lower Bound (CRLB) for the variance of an unbiased estimator of θ in the lognormal distribution

$$f(x;\theta) = \begin{cases} \frac{1}{x(2\pi\theta)^{\frac{1}{2}}} \exp\left(-\frac{1}{2\theta} \ln^2 x\right) & \text{for } x \ge 0 \text{ and } \theta > 0\\ 0 & \text{elsewhere} \end{cases}$$

QUESTION TWO (20 MARKS)

a) Determine the MLE of θ for

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} & \text{for } 0 \le x \le \theta \\ 0 & \text{elsewhere} \end{cases}$$

- b) Show that the estimator obtained in (a) is biased but consistent
- c) If X is a random variable distributed as a gamma distribution with parameters t and λ . Show that $E(X) = \frac{t}{\lambda}$ and $Var(X) = \frac{t}{\lambda^2}$. Obtain the estimators of t and λ by the methods of moment estimator (ME).

QUESTION THREE (20 MARKS)

a) Let $\overline{X_1}$ and $\overline{X_2}$ be independent samples means from two normal populations $N(\mu, \delta_1^2)$ and $N(\mu, \delta_2^2)$ respectively. If δ_1^2 and δ_2^2 are known. Show that a $100(1-\alpha)\%$ CI for $\mu_1 - \mu_2$ is

$$\Pr\left\{ (\overline{X_1} - \overline{X_2}) - Z_{\alpha/2} \left(\frac{\delta_1^2}{n_1} + \frac{\delta_2^2}{n_1} \right)^{\frac{1}{2}} < \mu_1 - \mu_2 < (\overline{X_1} - \overline{X_2}) + Z_{\alpha/2} \left(\frac{\delta_1^2}{n_1} + \frac{\delta_2^2}{n_1} \right)^{\frac{1}{2}} \right\}$$

Where n_1 and n_2 are respectively, the sample sizes from $N(\mu, \delta_1^2)$, $N(\mu, \delta_2^2)$ and $Z_{\alpha/2}$ is the value of standardized normal random variable z such that $R\{Z > Z_{\alpha/2}\} = \alpha/2$

- b) The fuel consumption of a certain type of vehicle is approximately, normal, with standard deviation 3 miles per litre. If a sample of 64 vehicles has an average fuel consumption of 16 miles per litre
 - (i) Determine the 95% CI for the mean fuel consumption of all vehicles of this type.
 - (ii) How large a sample is needed if we wish to be 0.5 miles per litre of the true mean?

QUESTION FOUR (20 MARKS)

- a) Let $X \sim B(1, P)$ Obtain the M.L.E of P hence or otherwise the MLE of p(1-p).
- b) Let X_1, X_2, \dots, X_n be a random sample from a negative exponential density

$$f(x;\theta) = \begin{cases} \theta e^{-\theta x} & x \ge 0\\ 0 & elsewhere \end{cases}$$

Estimate θ by the ME method

- c) Let X_1, X_2, \dots, X_n be a random sample from a normal distribution for which the mean 0 and the variance σ^2 (unknown).
 - a) Obtain the unbiased estimator for σ^2
 - b) Obtain the C-R lower bound for the unbiased estimator of σ^2

c) Does the variance of the UMVUE of σ^2 attain the CRLB

QUESTION FIVE (20 MARKS)

a) A random sample X_1, X_2, \dots, X_n comes from a binomial distribution iid as

$$p(x/\theta) = \begin{cases} \binom{n}{x} \theta^{x} (1-\theta)^{n-x} & x = 0, 1, 2, \dots, n \\ 0 & elsewhere \end{cases}$$

Where *n* is known but θ is unknown $0 < \theta < 1$

- i. Find a sufficient statistic for θ
- ii. Find the UMVU estimator for θ^2 .
- iii. Find the UMVU estimator of $\theta(1-\theta)$
- b) Let X_1 and X_2 be a sample of size 2 from a population X with mean μ and variable δ^2 . Two estimators for μ are proposed to be

$$\overline{\mu_1} = \frac{x_1 + x_2}{2}$$
 $\overline{\mu_2} = \frac{x_1 + 2x_2}{3}$

Which is the better estimator?

c) It is known that a certain proportion, say p, of manufactured parts is defective. From a supply of parts, n are choosen at random and tested. Define the readings (sample X₁, X₂,...,X_n) to be 1 if good and 0 if defective. The, a good estimator

$$\hat{p} = 1 - \bar{X} = 1 - \frac{1}{n}(x_1 + x_2 + \dots + x_n)$$

- (i) Is \hat{p} unbiased?
- (ii) Is \hat{p} consistent?
- (iii) Show that \hat{p} is an MLE of P.