

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2017/2018 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN

COURSE CODE:

STA 814

COURSE TITLE:

STATISTICAL INFERENCE

STATISTICS

DATE:

03/10/18

TIME: 8 AM -11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 3 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

SECTION A: COMPULSORY

QUESTION ONE (30MKS)

- a) Let $x_1, x_2, ..., x_n$ be a random sample of size n from a population with Poisson distribution with parameter λ . Find the UMVUE of $e^{-\lambda}$
- b) The following data gives the distribution of life (t) in hours of 337 electric bulbs of a certain manufacturing company. Assuming that the distribution of t follows the exponential law

$$f(t;\theta) = \begin{cases} \frac{1}{\theta} e^{\frac{-t}{\theta}} & \theta > 0, t \ge 0\\ 0 & elsewhere \end{cases}$$

Find the estimate of the characteristic θ by the method of MLE given the data:

Life in hours	0-50	51 - 100	101 – 150	151 - 200	201- 250	251 - 300	301 - 350	351 - 400
frequency	100	68	48	31	42	21	15	12

- c) i) Define the term sufficient statistics
 - ii) Let $x_1, x_2, ..., x_n$ be a random sample from a negative exponential density

$$f(x;\theta) = \begin{cases} \theta e^{-\theta x} & x \ge 0\\ 0 & elsewhere \end{cases}$$

estimate θ by the method of moments.

SECTION B: ANSWER ANY TWO QUESTIONS

QUESTION TWO (20 MKS)

Let $x_1, x_2, ..., x_n$ be a random sample from a normal distribution for which the mean is θ and variance σ^2 both parameters unknown.

- a) Obtain the unbiased estimator for θ and σ^2
- b) Obtain the C R lower bound for θ and σ^2

QUESTION THREE (20 MKS)

- a) Define the term an unbiased estimator
- b) A random sample of size n families each of two children, gave n_1 families with zero boys, n_2 families with one boy and n_3 families with two boys. It is assumed that the sexes of the two children are independent and that the probability of a boy is π at each birth. Find the MLE of π and show that it is an unbiased estimator.

QUESTION FOUR (20 MKS)

A random sample $x_1, x_2, ..., x_n$ comes from a binomial distribution iid as

$$P(x|\theta) = \begin{cases} \binom{n}{x} \theta^{x} 1 - \theta^{n-x} & x = 0, 1, 2, ..., n \\ 0 & elsewhere \end{cases}$$

where n is known but θ is unknown $0 < \theta < 1$.

- a) Find a sufficient statistic for θ
- b) Find UMVU estimator of θ^2
- c) Find UMVU estimator of $\theta(1-\theta)$

QUESTION FIVE (20 MKS)

- a) Define the term exponential family
- b) Let the random sample x_1, x_2, \dots, x_n have a uniform density given by

$$f(x;\theta) = \frac{I(x)}{[\theta - \frac{1}{2}, \theta + \frac{1}{2}]} \quad \text{with } -\infty < x < \infty$$

Obtain a sufficient statistic for θ hence or otherwise compute the MLE for θ .

c) Let $x_1, x_2, ..., x_n$ be a random sample from a uniform distribution on $(\mu - \sqrt{3} \delta, \mu + \sqrt{3} \delta)$, where μ and δ are unknown. Using the method of moments to obtain the estimators of μ and δ .