

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR FIRST YEAR FIRST SEMESTER MAIN EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN STATISTICS

COURSE CODE:

STA 805

COURSE TITLE:

MULTIVARIATE ANALYSIS

DATE: 15/09/17

TIME: 8 AM -11 PM

INSTRUCTIONS TO CANDIDATES

Answer Any THREE Questions

TIME: 3 Hours

This Paper Consists of 6 Printed Pages, Please Turn Over.

Question 1 (30 Marks)

(a.)Let \underline{X} be a PX1 random vector with $V(\underline{Y}) = \sum$ and $E(\underline{Y}) = \underline{\mu}$. Show that

- (i). The matrix Σ is symmetric positive definite if the component random variables of \underline{Y} are linearly independent (7 marks)
- (ii). for a quadratic form

$$Q(\underline{X}) = \underline{X}^1 A \underline{X} ,$$

$$E(Q(X)) = trace(A\Sigma) + \underline{\mu}^1 A\underline{\mu}$$

if A is a symmetric positive definitive matrix. (5 marks)

(b). Let \underline{Y} be a PX1 r.vector and \underline{X} be a P×1 random vector such that $Cov(Y,X) = \sum_{yx}$

Let A be a kxpmatrix of constants and B be a pxq matrix of constants. Show that

$$Cov(AY,BX) = A\sum_{vx}B^{T}$$
 (5 marks)

- (c).(i). Define the Hotteling T^2 statistic.
- (ii). Show that the statistic T² is invariant of non singular linear transformation. (8 marks)

- (iii). State the Roy's intersection principle for testing multivariate hypotheses. (5 marks)
- (d). Let \underline{Y} be a PX1 r.vector and \underline{X} be a P×1 random vector such that $Cov(Y,X) = \sum_{yx}$

Let A be a kxp matrix of constants and B be a pxq matrix of constants. Show that

$$Cov(A\underline{Y},\underline{B}X) = A\sum_{yx}B^{T}$$
 (5 marks)

Question 2 (20 Marks)

(a). Show that if \underline{Y} is $N_p[\underline{\mu}, \sum]$ then an rx1 subvector of \underline{Y} has an r-variate normal distribution with the same means, variance and covariances as in the original p-variate normal distribution.

(6 marks)

(b). Using part (a) , or otherwise, show that any individual variable Y_i in \underline{Y} is distributed as $N[\mu_i, \sigma_{ii}]$, where $\mu_i = E(Y_i)$

$$\sigma_{ii} = V(Y_i)$$
 (6 marks)

(c). Show that if \underline{Y} and \underline{X} are jointly multivariate normal with $\sum_{yx} \neq 0$, then the conditional distribution of \underline{Y} given as \underline{X} , $f(\underline{Y}/\underline{X})$ is multivariate normal with mean vector and covariance matrix.

$$E(\underline{Y}/\underline{X}) = \underline{\mu}_{y} + \sum_{yx} \sum_{xx}^{-1} (\underline{X} - \underline{\mu}_{x})$$

$$\bigvee(\underline{Y}/\underline{X}) = \sum_{yy} - \sum_{yx} \sum_{xx}^{-1} \sum_{yx}$$

respectively.

(8 marks)

Question 3 (20 Marks)

Let the random vector \underline{V} be $N_4[\underline{\mu}, \Sigma]$ where $\underline{\mu} = (2\ 5\ -2\ 1)^1$, and

$$\sum = \begin{pmatrix} 9 & 0 & 3 & 3 \\ 0 & 1 & -1 & 2 \\ 3 & -1 & 6 & -3 \\ 3 & 2 & -1 & 7 \end{pmatrix}$$

Let $\underline{V} = (Y_1 \ Y_{2v}X_1 \ X_2)^1$ (Hint: let entry at row 3, column 4 be -1) (6 marks)

- (a). Determine the distribution for $(Y_1 Y_2)^1 / (X_1 X_2)^1$
- (b). Hence or otherwise, calculate
 - (i). $Cov(X_1, X_2)$

(ii).
$$Cov((X_1 X_2)^1/(Y_1 Y_2)^1)$$
 (8 marks)

(c). If now $\underline{\vee}$ = (Y X₁ X₂ X₃)¹, find the distribution of Y / (X₁ X₂ X₃)¹

Question 4 (20 Marks)

(a). Let
$$f(\underline{x}) = \frac{1}{(2\pi)^{\frac{p}{2}} |\Sigma|^{\frac{1}{2}}} exp - (\underline{X} - \underline{\mu})^{1} \frac{\Sigma^{-1}}{2} (\underline{X} - \underline{\mu})$$

where \underline{X} is a px1 vector and \sum is a positive definite matrix

Show that

(i).
$$f(\underline{x}) \geq 0$$

(ii).
$$\int_{-\infty}^{\infty} f(\underline{x}) d\underline{x} = 1$$

where the integral denotes the P definite multiple integrals each over the interval $(-\infty,\infty)$. (8 marks)

(b). Let \underline{Y} be distributed as $N_p[\underline{\mu}, \Sigma]$

Show that the moment generating function of \underline{Y} is

$$M_y(t) = \exp \underline{t}^1 \underline{\mu} + \underline{t}^1 \underline{\Sigma} \underline{t} \text{ where } \underline{\Sigma} = Var(\underline{Y})$$
 (6 marks)

(c). Using part (b) or otherwise, show that the moment generating function of $\underline{Z} = \underline{Y} - \underline{M}$

$$M_z(t) = \exp \underline{t}^{1} \frac{\Sigma}{2} \underline{t}$$

(6 marks)

Question 5 (20 Marks)

- (a). Show that \underline{X} is $N_p[\underline{\mu}, \underline{\Sigma}]$ iff \underline{a}^1X is $N_1[\underline{a}^1\underline{\mu},\underline{a}^1\underline{\Sigma}\underline{a}]$ (6 marks)
- (b). (i). Briefly explain the importance of principal components analysis in statistics. (4 marks)
- (ii). Let $\underline{X}_1 \sim N[\mu_1, \sum]$ and $\underline{X}_2 N[\underline{\mu}_2, \sum]$ denote random

vectors with corresponding multivariate normal distribution. Assume \underline{X}_1 and \underline{X}_2 are independent. Assuming Σ is unknown consider testing

 H_0 ; $\mu_1 = \mu_2$

versus H_1 ; μ_1 different from μ_2

Determine a test for the hypothesis basing on the principal components of \underline{X}_1 and \underline{X}_2 . (10 marks)