

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER SPECIAL/ SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE: STA 446

COURSE TITLE: BAYESIAN STATISTICS

DATE: 20/09/17 **TIME**: 11.30 AM -1.30 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

- 1. (a) What are the hyperparameters, Loss function and Mean square error? What do they represent? (6 mks)
 - (b) Differentiate between Bayesian and Frequentist analysis (4 mks)
 - (c) In order to determine how effective a magazine is reaching its target audince, a market research company selects a random sample of people from the target audience and interviews them. Out of 150 people in the sample, 29 had seen the latest issue.
 - i. What is the distribution of y, the number who have seen the latest issue? (2 mks)
 - ii. Use the uniform prior for π , the proportion of the target audience that has seen the latest issue. What is the posterior distribution of π ? (3 mks)
 - (d) Let $X \sim B(n, p)$. Assume the prior distribution of p is uniform on [1,0]. Show that the posterior is essentially the likelihood function. (5 mks)
 - (e) An urn containing a total of 5 balls, some of which are red and the rest of which are green. Let the random variable X be the number of red balls in the urn. Find the Bayesian estimate of X (5 mks)
 - (f) Suppose X is a normal random variable with μ and variance σ^2 , where σ^2 is known and μ is unknown. Suppose μ behaves as a r.v whose probability distribution is $\pi(\mu)$ and is normally distributed with mean μ_p and variance σ_p^2 both assumed to be estimated. Find the mean and variance of the posterior pdf $f(\mu|X)$ if $\mu_p = 50$, $\sigma_p = 6$ and $\sigma = 5$, x = 52. (5 mks)

QUESTION TWO (20 MARKS)

- 2. (a) Define a Bayesian Credible interval (2 mks)
 - (b) What is the squared-error loss Bayes estimate for the parameter θ in a binomial pdf, where θ has a uniform distribution that is, a noninformative prior? (Recall that a uniform prior is a beta pdf for which r = s = 1.) (8 mks)
 - (c) Let $Y|\pi$ be binomial $(n=4,\pi)$. Suppose we consider that there are only three possible values for π , 0.4, 0.5 and 0.6 and that Y=3. Find the posterior probabilty distribution of π (10 mks)

QUESTION THREE (20 MARKS)

- 3. (a) In a research program of human health from recreational contactwith contaminated with pathogenic microbiological material, the National Environmental Management Authority (NEMA) instituted a study to determine the quality of Kenya stream water in a variety of catchment types in Nakuru County. This study showed that where n=116 one-litre water samples from sites identified as having a heavy environmental impact from birds (flamingo) and waterfowl. Out of these samples, y=17 samples contained Giardia cysts.
 - i. What is the distribution of y, the number of samples containing $Giardia\ cysts$ (2 mks)
 - ii. Let π be the true probability that a one-litre water sample from this type of site contains *Giardia cysts*. Use a beta(1,4) prior for π . Find the posterior distribution of π given y. (2 mks)
 - iii. Summarize the posterior distribution by its first two moments (4 mks) $\,$
 - iv. Find the normal approximation to the posterior distribution $g(\pi|y)^{*}$ (2 mks)
 - v. Compute a 95 percent credible interval for π using the normal approximation found in part (iv) (5 mks)

- (b) Suppose $X_1, ..., X_n$ is a sample from geometric distribution with parameter p, $0 \le p \le 1$. Assume that the prior distribution of p is beta with a = 4 and b = 4. Find
 - i. the posterior distribution of p (3 mks)
 - ii. the Bayes estimate under quadratic loss function (2 mks)

QUESTION FOUR (20 MARKS)

- 4. (a) Suppose that X is a geometric random variable, where $p_X(k|\theta) = (1-\theta)^{k-1}\theta, k=1,2,\ldots$ Assume that the prior distribution for θ is the beta p.d.f. with parameters r and s. Find the posterior distribution for θ .
 - (b) Suppose the binomial pdf describes the number of votes a candidate might receive in a poll conducted before the general election. Moreover, suppose a beta prior distribution has been assigned to θ , and every indicator suggests the election will be close. The pollster, then, has good reason for concentrating the bulk of the prior distribution around the value $\theta = \frac{1}{2}$. Setting the two beta parameters r and s both equal to 135 will accomplish that objective (in the event r = s = 135, the probability of θ being between 0.45 and 0.55 is approximately 0.90).
 - i. Find the corresponding posterior distribution. (4 mks)
 - ii. Find the squared-error loss Bayes estimate for θ and express it as a weighted average of the maximum likelihood estimate for θ and the mean of the prior pdf. (4 mks)
 - (c) Let $Y_1, Y_2, ..., Y_n$ be a random sample from a gamma pdf with parameters r and θ , where the prior distribution assigned to θ is the gamma pdf with parameters s and μ . Let $W = Y_1 + Y_2 + ... + Y_n$. Find the posterior pdf for θ . (6 mks)

QUESTION FIVE (20 MARKS)

- 5. Let X_1, X_2, \ldots, X_n be $N(\mu, \sigma^2)$ random variables with prior $\pi(\mu)$ having $N(\mu_0, \sigma_0^2)$ distribution with known σ^2 .
 - (a) Obtain the posterior distribution of μ . (8 mks)
 - (b) Suppose it is known from past experience that the weight loss for a particular combination of diet and exercise program (if followed for a month) is normally distributed with mean 10 lb and standard deviation of 2 lb. A random sample of five persons who went through this program for a month produced the following weight loss in pounds: 14 8 11 7 11. What is the point estimate of the mean, μ ? Assume $\sigma^2 = 4$. (12 mks)