

(Knowledge for Development)

KIBABII UNIVERSITY

FOR THE DEGREE OF BACHELOR OF SCIENCE

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER SPECIAL/ SUPPLEMENTARY EXAMINATION

COURSE CODE: STA 444

COURSE TITLE:

SEQUENTIAL ANALYSIS

DATE:

25/09/17

TIME: 8 AM -10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

Question one (30mks)

- (a) Distinguish between sequential analysis and sequential tests (4mks)
- (b) State the likelihood ratio for testing H_0 : $\theta = \theta_0$ against H_1 : $\theta = \theta_1$ where $\theta_0 \le \theta_1$ (4mks)
- (c) Given that $\alpha = 0.05$ and $\beta = 0.01$, find the conditions under which the alternative hypothesis H_I will be accepted (6 mks)
- (d) Given x_1, x_n, \ldots, x_n is a random sample from $f(x, \theta), \theta \in \Omega$ with illustrations show how
 - i. The estimate of the parameter can be derived

(4mks)

ii. The sequential probability ratio test can be carried out

(4mks)

(e) Examine if a test exists for testing H_0 : $\mu = \mu_0$ in $f(x, \mu) = e^{-(x-\mu)}$ if $\mu < x < \infty$ (8 mks)

Question Two (20 marks)

Given the exponential distribution

$$f_2(\mathbf{x}) = \theta^{-1} \exp(-\mathbf{x}/\theta)$$
 where $\theta_0 \le \theta_1$

State that Ho will be accepted immediately

$$\bar{S}_{X} \leq S_{1} \text{ where } S_{1} = n \left(\theta_{0} + n \log \frac{\theta_{1}}{\theta_{0}}\right) \frac{\theta_{0} \theta_{1}}{\theta_{1} - \theta_{0}}$$

Question Three (20 marks)

Derive the value of K in SPRT given

 $X \sim N(\mu, \delta^2)$ where δ^2 is know with a one sided alternative hypothesis

Question four (20 marks)

- (a) How can the expected value of the stopping time in sequential analysis be obtained? (4 mks)
- (b) Distinguish between α and β as used in hypotheses testing

(2 mks)

(c) With an illustration briefly explain the critical region

(4 mks)

- (d) State the characteristics that are necessary in sequential analysis in order accept or reject H_0 (4 mks)
- (e) Highlight the significance of ASN functions

(2 mks)

(f) Show how the expected sample size in a sequential test can be derived

(4 mks)

Question five (20 marks)

(a) What is the power function of parameter θ

(b) Let x_1, x_2, \dots, x_n be iid random variables with a common distribution p. state the stage when SPRT stops sampling in testing H_0 : $p = p_0 v_s H_1$: $p = p_1$ (4 mks)

(2 mks)

(c) Given $X \sim \beta(n, p)$ obtain the test for: $p \le p_0 \text{ vs } H_1$: $p \ge p_0$ (8 mks)

(d) Given that $\Phi_0 \le \bar{x} \le \Phi_1$, State the Walds approximation for Φ_0 and Φ_1 and find $E(T|H_0)$ and $E(T|H_1)$ (6 mks)