

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2016/2017 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

(MATHEMATICS)

COURSE CODE: STA 443

COURSE TITLE: PROBABILITY AND MEASURE

DATE: 15/09/17 **TIME**: 3 PM -5 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS QUESTION ONE (30 MARKS)

- (a) i. What are Lebesgue measurable sets? (2 mks) ii. Describe any two Lebesgue measurable sets. (4 mks)
 (b) Show that if A and B are subsets of E such that μ*(A) and μ*(B) are both finite then, |μ*(A) μ*(B)| ≤ μ*(AΔB) where (AΔB) := (AB^c) ∪ (BA^c) (5 mks)
 (c) If μ is a σ-finite measure on an algebra A of subsets of S. Show that:
 - i. there exists an increasing sequence and (4 mks)
 - ii. there exists a disjoint σ -finite sequence. (4 mks)
 - (d) If $A \subset B$, show that $\mu^*(A) \le \mu^*(B)$. (3 mks)
 - (e) Prove that if $0 \le f_n \to f$ almost everywhere and $\int f_n d\mu \le A < \infty$, then f is integrable and $\int f d\mu \le A$ (3 mks)
 - (f) State and briefly explain any two types of measures on the intervals over the real line. (5 mks)

QUESTION TWO (20 MARKS)

2. (a) Let $\{E_i \subset \mathbb{R}^n : i \in \mathbb{N}\}$ is countable collection of \mathbb{R}^n . Show that

$$\mu^*(\cup_i^{\infty} E_i) \le \sum_{i=1}^{\infty} \mu^*(E_i)$$

(5 mks)

- (b) Let $f_{XY}(x,y) = \frac{1}{50}(x^2+y^2)$ if 0 < x < 2, 1 < y < 4 and zero otherwise. Find P(X+Y>4)
- (c) Suppose A and B are independent events in the sample space. Show that A^c and B are independent. (5 mks)
- (d) Prove that every monotone function is measurable. (5 mks)

QUESTION THREE (20 MARKS)

3. (a) Find the integral $f(x,y) = x^2 + y^2$, on the domain

$$D = \left\{ (x,y) \in R^2 : 0 < x < 1, x^2 < y < x \right\}$$

(8 mks)

(b) Suppose $f = \sum_i x_i I_{Ai}$ is a non-negative simple function, $\{A_i\}$ being decomposition of S into F sets, show that

$$\int f d\mu = \sum_{i} x_{i} \mu(A_{i})$$

(6 mks)

(c) Let $r, s, t \in [1, \infty]$ satisfy $\frac{1}{r} + \frac{1}{s} = \frac{1}{t}$. Prove that for all measurable f and g defined on a space (X, A, μ) , given $||fg||_t \le ||f||_r ||g||_s$ (6 mks)

QUESTION FOUR (20 MARKS)

- 4. (a) State and explain two properties of conditional expectation (4 mks)
 - (b) Find the mathematical expectation of a random variable with (9 mks)
 - i. uniform distribution over the interval [a, b]
 - ii. triangle distribution
 - iii. exponential distribution
 - (c) Show that if $\{f_n\}$ is a sequence of non-negative measurable functions, and $\{f_n(x): n \leq 1\}$ increases monotonically to f(x) for each x then

 $\lim_{n\to\infty} \int_E f_n(x) dm = \int_E f dm \tag{7 mks}$

QUESTION FIVE (20 MARKS)

- 5. (a) State Fubini's theorem (2 mks)
 - (b) Let f_1 and f_2 be measurable functions on a common domain. Show that each set $\{\omega: f_1(\omega) < f_2(\omega)\}$, $\{\omega: f_1(\omega) = f_2(\omega)\}$ and $\{\omega: f_1(\omega) > f_2(\omega)\}$ is measurable (8 mks)
 - (c) Suppose $\{B_n\}$ is sequence of independent events and $\sum_n Pr\{B_n\} = \infty$. Show the probability that B_n occurs infinitely often is one. (10 mks)