

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2017/2018 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

(MATHEMATICS)

COURSE CODE:

STA 443

COURSE TITLE:

PROBABILITY AND MEASURE

DATE:

05/10/18

TIME: 3 PM -5 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS QUESTION ONE (30 MARKS)

- 1. (a) Let \mathcal{F} be a collection of subsets of X
 - i. State three conditions that satisfy \mathcal{F} to be a sigma algebra (3 mks)
 - ii. Give three examples of σ -algebras (3 mks)
 - (b) State the basic axioms that must be satisfied by a probability measure (3 mks)
 - (c) If μ is a σ -finite measure on an algebra A of subsets of S. Show that:
 - i. there exists an increasing sequence and (4 mks)
 - ii. there exists a disjoint σ -finite sequence. (4 mks)
 - (d) If $A \subset B$, show that $\mu^*(A) \le \mu^*(B)$. (3 mks)
 - (e) Suppose A and B are independent events in the sample space. Show that A^c and B are independent. (5 mks)
 - (f) Prove that every monotone function is measurable. (5 mks)

QUESTION TWO (20 MARKS)

- 2. (a) Show that a σ -field cannot be countably infiniteits cardinality must be finite or else at least that of the continuum. Show by example that a field can be countably infinite. (5 mks)
 - (b) Let $f_{XY}(x,y) = \frac{1}{30}(x^2 + y^2)$ if 0 < x < 2, 1 < y < 4 and zero otherwise. Find P(X + Y > 4) (5 mks)
 - (c) Suppose X is a random variable with distribution μ_X , and g is a Borel measurable function. Show that

$$E[g(X)] = \int_{R} g(x) d\mu_{X}$$

(5 mks)

(d) State and briefly explain any two types of measures on the intervals over the real line. (5 mks)

QUESTION THREE (20 MARKS)

3. (a) Suppose X_1, X_2, \ldots, X_n are random variables with finite variance. If X_1, \ldots, X_n are pairwise orthogonal. Show that

$$Var[X_1 + X_2 + ... + X_n] = Var[X_1] + ... + Var[X_n]$$

(8 mks)

(b) Suppose $f = \sum_i x_i I_{Ai}$ is a non-negative simple function, $\{A_i\}$ being decomposition of S into F sets, show that

$$\int f d\mu = \sum_{i} x_{i} \mu(A_{i})$$

(6 mks)

(c) Let $r, s, t \in [1, \infty]$ satisfy $\frac{1}{r} + \frac{1}{s} = \frac{1}{t}$. Prove that for all measurable f and g defined on a space (X, A, μ) , given $||fg||_t \le ||f||_r ||g||_s$ (6 mks)

QUESTION FOUR (20 MARKS)

- 4. (a) State and explain two properties of conditional expectation (4 mks)
 - (b) Find the mathematical expectation of a random variable with:
 - i. uniform distribution over the interval [a, b]
 - ii. triangle distribution
 - iii. exponential distribution

(6 mks)

(c) Show that if $\{f_n\}$ is a sequence of non-negative measurable functions, and $\{f_n(x): n \leq 1\}$ increases monotonically to f(x) for each x then

$$\lim_{n \to \infty} \int_{E} f_{n}(x) dm = \int_{E} f dm$$

(5 mks)

(d) Find the integral $f(x,y) = x^2 + y^2$, on the domain

$$D = \left\{ (x,y) \in R^2 : 0 < x < 1, x^2 < y < x \right\}$$

(6 mks)

QUESTION FIVE (20 MARKS)

- 5. A σ -field is countably generated, or separable, if it is generated by some countable class of sets.
 - (a) Show that the σ -field ${\cal B}$ of Borel sets is countably generated. (6 mks)
 - (b) Show that the σ -field is countably generated if and only if Ω is countable. (7 mks)
 - (c) Suppose that \mathcal{F}_1 and \mathcal{F}_2 are σ -fields, $\mathcal{F}_1 \subset \mathcal{F}_2$, and \mathcal{F}_2 is countably generated. Show by example that may not be countably generated. (7 mks)