

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2017/2018 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

(MATHEMATICS)

COURSE CODE:

STA 443

COURSE TITLE:

PROBABILITY AND MEASURE

DATE:

20/12/17

TIME: 8 AM - 10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

- 1. (a) i. Explain the following terms: an algebra and a sigma algebra (2 mks)
 - ii. Let $E_1, E_2 \in \mathcal{F}_0$. Prove that \mathcal{F}_0 is an algebra and not a σ -algebra mks) (4
 - (b) A random variable X has a normal distribution with mean $\mu = 0$ and variance $\sigma^2 = 1$. Find the distribution function of X (3 mks)
 - (c) If μ is a σ -finite measure on an algebra A of subsets of S. Show that:
 - i. there exists an increasing sequence and (4 mks)
 - ii. there exists a disjoint σ -finite sequence. (4 mks)
 - (d) If $A \subset B$, show that $\mu^*(A) \le \mu^*(B)$. (3 mks)
 - (e) Suppose X is a random variable with distribution μ_X , and g is a Borel measurable function. Show that

$$E[g(X)] = \int_{R} g(x)d\mu_{X}$$

(5 mks)

(f) State and briefly explain any two types of measures on the intervals over the real line. (5 mks)

QUESTION TWO (20 MARKS)

2. (a) Let $\{E_i \subset \mathbb{R}^n : i \in \mathbb{N}\}$ is countable collection of \mathbb{R}^n . Show that

$$\mu^*(\cup_i^\infty E_i) \le \sum_{i=1}^\infty \mu^*(E_i)$$

(5 mks)

- (b) Let $f_{XY}(x,y)=\frac{1}{50}(x^2+y^2)$ if 0< x< 2, 1< y< 4 and zero otherwise. Find P(X+Y>4)
- (c) Suppose A and B are independent events in the sample space. Show that A^c and B are independent. (5 mks)
- (d) Prove that every monotone function is measurable. (5 mks)

QUESTION THREE (20 MARKS)

3. (a) Find the integral $f(x,y) = x^2 + y^2$, on the domain

$$D = \left\{ (x, y) \in R^2 : 0 < x < 1, x^2 < y < x \right\}$$

(8 mks)

(b) Suppose $f = \sum_{i} x_{i} I_{Ai}$ is a non-negative simple function, $\{A_{i}\}$ being decomposition of S into F sets, show that

$$\int f d\mu = \sum_{i} x_{i} \mu(A_{i})$$

(6 mks)

(c) Let $r, s, t \in [1, \infty]$ satisfy $\frac{1}{r} + \frac{1}{s} = \frac{1}{t}$. Prove that for all measurable f and g defined on a space (X, A, μ) , given $||fg||_t \le ||f||_r ||g||_s$ (6 mks)

QUESTION FOUR (20 MARKS)

- 4. (a) State and explain two properties of conditional expectation (4 mks)
 - (b) Find the mathematical expectation of a random variable with:
 - i. uniform distribution over the interval [a, b]
 - ii. triangle distribution
 - iii. exponential distribution

(6 mks)

(c) Show that if $\{f_n\}$ is a sequence of non-negative measurable functions, and $\{f_n(x): n \leq 1\}$ increases monotonically to f(x) for each x then

$$\lim_{n \to \infty} \int_{E} f_{n}(x) dm = \int_{E} f dm$$

(5 mks)

(d) Suppose X_1, X_2, \ldots, X_n are random variables with finite variance. If X_1, \ldots, X_n are pairwise orthogonal. Show that

$$Var[X_1 + X_2 + ... + X_n] = Var[X_1] + ... + Var[X_n]$$
(6 mks)

QUESTION FIVE (20 MARKS)

5. (a) State Fubini's theorem

(2 mks)

- (b) Let f_1 and f_2 be measurable functions on a common domain. Show that each set $\{\omega: f_1(\omega) < f_2(\omega)\}$, $\{\omega: f_1(\omega) = f_2(\omega)\}$ and $\{\omega: f_1(\omega) > f_2(\omega)\}$ is measurable (8 mks)
- (c) Suppose $\{B_n\}$ is sequence of independent events and $\sum_n Pr\{B_n\} = \infty$. Show the probability that B_n occurs infinitely often is one. (10 mks)