

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2017/2018 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE:

STA 442

COURSE TITLE:

MULTIVARIATE ANALYSIS

DATE:

12/10/18

TIME: 11.30 AM -1.30 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

- (a) Define the following terms
 - (i) Random vector
 - (ii) Positive definite matrix

(1mks)

(b) Let $\underline{x} = [5,1,3]$ and $\underline{y} = [-1,3,1]$. Find

(2mks)

- The length of \underline{x}
- (ii) The angle between \underline{x} and \underline{y}

(2mk)

The length of the projection of \underline{x} on \underline{y}

(3mks) (1mk)

- (c) Let $A = \begin{bmatrix} 9 & -2 \\ -2 & 6 \end{bmatrix}$
 - (i) Is A symmetric? Give reason
 - (ii) Obtain Eigen value

(1mk)

(iii) Show that A is positive definite

(3mks)

- (6mks)
- (d) Consider the following n=3 observations on p=2 variables Variable 1: $x_{11} = 2, x_{21} = 3, x_{31} = 4$
 - Variable 1: $x_{12} = 1$, $x_{22} = 2$, $x_{32} = 4$
 - Compute the sample means $ar{x_1}$ and $ar{x_2}$ and the sample variances S_{11} and S_{22} (i)
 - Compute the sample covariance \mathcal{S}_{12} and the sample correlation coefficient r_{12} (ii) and interpret these quantities
 - Display the sample mean array $ar{x}$, the sample correlation array R and the sample (iii) variance-covariance \mathcal{S}_{12} (4mks)

QUESTION TWO (20MARKS)

- (a) Let \underline{x} be a p-variate random vector with mean vector $\underline{\mu}$ and variance covariance matrix Σ , show that $E(\underline{XX'}) = \Sigma + \underline{\mu\mu'}$, hence show that $E(\underline{X'AX}) = trace(A\Sigma) + \underline{\mu'A\mu}$ where A is a symmetric matrix of constants. (b) Let \underline{x} be a trivariate random vector such that

$$E(\underline{x}) = 0$$
 and $var(\underline{x}) = \begin{bmatrix} 5 & 2 & 3 \\ 2 & 3 & 0 \\ 3 & 0 & 2 \end{bmatrix}$. Find the expected value of the quadratic

$$Q = (x_1 - x_2)^2 + (x_2 - x_3)^2 + (x_3 - x_1)^2$$
(4mks)

- (c) Using the variance-covariance matrix in part (b) find
 - (i) The variance of $Y = x_1 2x_2 + x_3$ (2mks)
 - (ii) The variance covariance matrix of $Y = (Y_1, Y_2)$ where $Y_1 = x_1 + x_2$ and $Y_2 = x_1 + 2x_2 + x_3$ (4mks)
- (d) Let \underline{x} be a p-variate random vector and $\underline{a}p \times 1$ vector of constants, show that

$$E\left[\left(\underline{x} - \underline{a}\right)\left(\underline{x} - \underline{a}\right)'\right] = \left[\left(E\left(\underline{x}\right) - \underline{a}\right)\left(E\left(\underline{x} - \underline{a}\right)'\right] + var\left(\underline{x}\right)$$
 (4mks)

QUESTION THREE (20 MARKS)

- (a) Assume $\underline{x}' = (x_1, x_2, x_3)$ is normally distributed with mean vector $\underline{\mu} = (1, -1, 2)$ and variance matrix $\Sigma = \begin{bmatrix} 4 & 0 & -1 \\ 0 & 5 & 0 \\ -1 & 0 & 2 \end{bmatrix}$. Find the distribution of $3x_1 2x_2 + x_3$ (7mks)
- (b) Show that the sample mean is an unbiased estimator of $\underline{\mu}$ and that the sample variance is biased estimator of matrix Σ
- (c) Find the maximum likelihood estimators of the mean vector $\underline{\mu}$ and covariance matrix Σ based on the data matrix

$$x = \begin{bmatrix} 3 & 6\\ 4 & 4\\ 5 & 7\\ 4 & 7 \end{bmatrix}$$
 (7mks)

QUESTION FOUR (20 MARKS)

(a) Given the data matrix $x = \begin{bmatrix} 1 & 9 & 10 \\ 4 & 12 & 16 \\ 2 & 10 & 12 \\ 5 & 8 & 13 \\ 3 & 11 & 14 \end{bmatrix}$

Define $X_c = X - 1 \overline{x}'$ as the mean corrected data matrix.

- (i) Obtain the mean corrected data matrix (5mks)
- (ii) Obtain the sample covariance matrix and hence the generalized variance (8mks)
- (iii) Verify that columns of mean corrected data matrixare linearly dependent. (3mks)
- (iv) Specify a vector $a' = [a_1 \ a_2 \ a_3]$ that establishes the linear dependence (4mks)

QUESTION FIVE (20 MARKS)

(a) Let \underline{x} be a random vector having the covariance matrix

$$\Sigma = \begin{bmatrix} 25 & -2 & 4 \\ -2 & 4 & 1 \\ 4 & 1 & 9 \end{bmatrix}$$

Obtain the population correlation matrix (
ho) and $V^{rac{1}{2}}$ (i)

(6mks)

(ii) Multiply your matrices to check the relation $V^{\frac{1}{2}}\rho V^{\frac{1}{2}}$

(4mks)

(b) Given that $f(x_1 + x_2) = \begin{cases} x_1 x_2, & 0 \le x_1 \le x_2 \le 1 \\ 0 & e \setminus w \end{cases}$ Obtain $E(x_1/x_2)$ where E[x] means expected value of x.

(10 mks)