

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2017/2018 ACADEMIC YEAR
THIRD YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE (MATHEMATICS)

COURSE CODE:

STA 343

COURSE TITLE:

SAMPLE SURVEY II

DATE:

11/01/18

TIME: 9 AM -11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION 1: (30 marks)

- (a) For a population of size N from which a sample of size n is drawn, what would be the probability of selecting such a sample under,
 - (i) Simple random sampling with replacement(SRSWR) (2 marks)
 - (ii) Simple random sampling without replacement (SRSWOR) (2 marks)
- (b) Three elements are to be drawn from a population of size 6. How many samples will we have under,
 - (i) Simple random sampling with replacement (SRSWR) scheme? What would be the probability of selecting such a sample? (3 marks)
 - (ii) Simple random sampling without replacement (SRSWOR) scheme? What would be the probability of selecting such a sample? (3 marks)
- (c) Suppose we are willing to accept a margin of error of 5%, derive an expression we would use to obtain sample size n' for a prior knowledge of population proportion, P. (6 marks)
- (d) Use (c) above to obtain n' for a proportion, P= 0.5 under SRSWR scheme. (4 marks)
- (e) Working under SRSWOR scheme and basing on the information in (d) above, obtain the sample Size one would draw from a population of size N=1500. (5 marks)
- (f) Describe cluster sampling. (5 marks)

QUESTION 2: (20 marks)

- (a) Illustrate how you would carry out a Stratified sampling scheme. How does it differ from a cluster sampling procedure? (8 marks)
- (b) In a population of size N=7 and the number of strata is L=2,the response values y_{hi} are given as 0,1,2,3 for the first stratum and 4,7,9,10 for the second stratum. A random sample of size n=4 is to be taken, find the suitable stratum size n_h under;
 - (i) Neyman allocation

(7 marks)

(ii) Proportional allocation

(5 marks)

QUESTION 3: (20 marks)

(a) State the advantages of using Stratified Sampling technique.

(8 marks)

(b) In a stratified sampling scheme, consider the sampling variance to be:

$$Var(\bar{y}) = \sum_{h=1}^{L} \frac{W_h^2 S_h^2}{n_h} \left(\frac{N_h - n_h}{N_h} \right) = \sum_{h=1}^{L} \frac{W_h^2 S_h^2}{n_h} - \sum_{h=1}^{L} \frac{W_h^2 S_h^2}{N_h}$$

Let the total cost C of conducting the survey be given by the function

$$C = C_0 + \sum_{h} n_h C_h$$

Where C_0 is the overhead cost, C_h the cost of sampling one unit and n_h the h^{th} stratum Sample size.

By using the method of Lagrange's multipliers, minimize the sampling variance for a fixed cost with respect to n_h and hence derive the sample size allocation (Hint: use optimum allocation procedure) (12 marks)

QUESTION 4: (20 marks)

- (a) Briefly describe any four methods you would use to determine sample size (8 marks)
- (b) In obtaining sample size based on sampling cost, a cost function is given as $C = C_0 + nC_1$ and the loss function of the form,

$$L(e) = \lambda e^2$$

Where λ is a constant, C₀ the overhead cost, C₁ the cost of surveying a single unit and $e=\overline{y}-\overline{Y}$.

Evaluate the necessary sample size,

- (i) Under the simple random sampling with replacement(SRSWR) scheme
- (ii) Under simple random sampling without replacement (SRSWOR) scheme (12 marks)

QUESTION 5: (20 marks)

- (a) State the advantages of systematic over simple random sampling scheme. (4 marks)
- (b) Distinguish Linear systematic sampling(LSS) from Circular systematic sampling(CSS). (6 marks)
- (c) Prove that in LSS the population variance is the sum of the variations within the samples and between the samples $(\ 10 \ \text{marks} \)$