

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2017/2018 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND

BACHELOR OF SCIENCE

COURSE CODE:

STA 241

COURSE TITLE:

STATISTICS AND PROBABILITY

DATE:

01/10/18

TIME: 8 AM -10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

Question 1 (30 marks)

- a) If e^{3t+8t^2} is the m.g.f of the random variable X from a normal population, find P(-1 < x < 9) (4 marks)
- b) The discrete random variable Y had the following probability distribution: (Y can only assume values 0, 1,2 and 3).

У	0	1	2	3
P(y)	2a	3a	7a	6a

i) Find the value of c.

(2 marks)

ii) Find the mean and variance of Y.

(4 marks)

c) Suppose that Y has density function

$$f(y) = \begin{cases} cy, 0 \le y \le 2, \\ 0, \text{elsewhere} \end{cases}$$

- i) Find the value of C that makes f(y) a probability density function (2 marks)
- ii) Find F(y)

(1 mark)

- d) The achievement scores for a college entrance examination are normally distributed with mean 75 and standard deviation 10. What fraction of the scores lies between 70 and 90? (4 marks)
- e) Let Y be a random variable with moment-generating function $m(t) = \frac{1}{6}e^t + \frac{2}{6}e^{2t} + \frac{3}{6}e^{3t}$.
- f) Four-week summer totals in section of the Midwest United States have approximately a gamma distribution with $\alpha = 4.8$ and $\beta = 6.0$. Find the mean and variance of the fourweek rainfall totals

Find i) E(Y) ii) V(Y) iii) the probability distribution of Y. (8 marks)

g) Let X_1 and X_2 have joint density function given as

$$f(x_1, x_2) = \begin{cases} 3x_1, & 0 \le x_1 \le 1 \\ 0, & \text{elsewhere} \end{cases}$$

Find the mean and variance of $X_1(4\text{marks})$

Question 2 (20 marks)

- a) Find the moment generating function of a binomial random variable $X \sim B(n, p)$, hence find the E(x) and Var(x) (10 marks)
- b) A new surgical procedure is successful with a probability of p. Assume that the operation is performed five times and the results are independent of one another. What is the probability that:

(i) All five operations are successful if p=0.8

(3 marks)

(ii) Exactly four are successful if p=0.6

(3 marks)

(iii) Less than two are successful if p=0.3

(4 marks)

Question 3 (20 marks)

a) The table below shows the probability distribution of a random variable Y

V	0	1	3	4
P(v)	0.125	0.25	0.375	0.25

Compute the standard deviation of Y

(5 marks)

- b) A committee of 4 people is to be selected at random from among 10 people, of whom 3 are women and 7 are men. If Y denotes the number of women selected, determine the probability distribution of Y. (6 marks)
- c) The time in minutes taken by a milk man to deliver milk to a nearby dairy is normally distributed with a mean of 12 minutes and a variance of 4 minutes. Estimate the number of days during the year when he takes

i) Longer than 17 min

(3 marks)

ii) Less than 10 min

(3 marks)

iii) Between 9 min and 13 min

(3 marks)

Question 4 (20 marks

a) Let Y be a random variable with probability density function

$$F(y) = \begin{cases} k(2-y), & 0 \le y \le 2\\ 0, & elsewhere \end{cases}$$

Where k is a positive constant.

- a) Find k such that f(y) is a valid probability density function. (3 marks)
- b) Find the cumulative distribution function for Y. Make sure to specify F(y) for all real values of y. (5 marks)
- c) Sketch the graphs of f(y) and F(y) (2 marks)
- d) Find E(Y) and V(Y) (8 marks)
- e) The standard deviation (2 marks)

Question 5 (20 marks)

a) The probability that a patient recovers from a stomach disease is 0.8. Suppose 20 people are known to have contracted tis disease. What is the probability that:

i)exactly 14 recover

(3 marks)

ii) at least 18 recover

(4 marks)

ii) at least 14 but not more 18 recover

(4marks)

iii) At most 16 recover.

(2 marks)

- b) The distance between flaws on a long cable is exponentially distributed with mean 2m. Find:
 - i) the probability that the distance between two flows is greater than 15m (3 marks)
- iii) The probability that the distance between two flaws is between 8 and 20 (4 marks)