

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2015/2016 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

(MATHEMATICS) AND BACHELOR OF EDUCATION

COURSE CODE: STA 241

COURSE TITLE: STATISTICS AND PROBABILITY

DATE:

11/5/16

TIME: 9 AM -11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS.

QUESTION ONE (30 MARKS)-COMPULSORY

1.	(a)	A continuous random variable X has the probability density func-
		tion $f(x)$ given by $f(x) = kx^2(1-x)$ for $0 \le x \le 1$, $f(x) = 0$
		elsewhere, where is a constant. Determine

i.	the value of k	(1 mk)
40	one range of it	/ 1 1111

ii.
$$E(X)$$
 and $var(X)$ (4 mk)

iii.
$$P(X < E(X))$$
 (2 mks)

(b) Show that
$$var(CX) = C^2 var$$
 where C is a constant (2 mks)

- (c) i. Define moment generating function (1 mk)
 - ii. Show that if X and Y are independent random variables with moment generating functions $M_X(t)$ and $M_Y(t)$ and

$$Z = X + Y \text{ then } M_Z(t) = M_X(t)M_Y(t)$$
(3 mks)

- (d) State and explain any four assumptions of the binomial distribution (4 mks)
- (e) The moment generating function of a random variable X is $e^{(e^t-1)}$. Determine $P(\mu 2\sigma < x < \mu + 2\sigma)$ (4 mks)
- (f) An urn contains 6 red and 4 white marbles. Three marbles are drawn at random without replacement. Find that
 - i. at least two white marbles were drawn (2 mks)
 - ii. exactly two white marbles were drawn (2 mks)
- (g) A non-normal distribution representing the number of trips performed by trucks per week in an oil field has a mean of 100 trips and a variance of 121 trips. A random sample of 36 trucks is taken from the non-normal population. Using the central limit theorem, calculate the probability that the sample mean is

QUESTION TWO (20 marks)

2. (a) Let

$$P(X = x) = \begin{cases} \left(\frac{1}{2}\right)^x, & x = 1, 2, 3, \dots \\ 0, & elsewhere \end{cases}$$

be the pdf of X. Find the moment generating function, mean and variance of X. (10 mks)

- (b) At Nakumatt Supermarket, 60 percent of the customers pay by the credit card. Find the probability that in a randomly selected sample of 10 customers:
 - i. exactly two customers pay by credit card (2 mks)
 - ii. more than seven customers pay by credit card (2 mks)
- (c) Show that the expected value and variance of a random variable whose moment generating function is $M_X(x) = \frac{\lambda}{\lambda t}$ is λ and $\frac{1}{\lambda^2}$ respectively. (6 mks)

QUESTION THREE (20 marks)

3. (a) Suppose X is a geometric random variable with the parameter P. Show that:

i.
$$E(X) = \frac{q}{p}$$
 (4 mks)

ii.
$$Var(X) = \frac{q}{p^2}$$
 (4 mks)

iii.
$$M_X(t) = \frac{p}{(1-qe)}$$
 (4 mks)

(b) If Y is a random variable having a students t distribution with k degrees of freedom, show that E(X) = 0 for k > 1 and

$$Var(X) = \frac{k}{k-2} \text{ for } k > 2$$
 (8 mks)

QUESTION FOUR (20 marks)

4. (a) Given

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & elsewhere \end{cases}$$

Find the mean and variance of X

(8 mks)

- (b) A random variable X is normal with $\mu = 50$ and $\sigma = 10$. Compute the P(45 < x < 62) (4 mks)
- (c) Suppose X is a negative binomial random variable with parameter P. Compute its moment generating function and hence find the mean of X. (8 mks)

QUESTION FIVE (20 MARKS)

- 5. (a) A company manufactures resistors with a mean resistance of 100 ohms and a standard deviation of 10 ohms. Using the central limit theorem, find the probability that a random sample of size 25 resistors will have an average resistance less than 95 ohms. (5 mks)
 - (b) The MGF of a random variable X given by $M_X(t) = e^{(5t+2t^2)}$. Calculate p(9 < X < 11) (7 mks)
 - (c) Suppose x is a negative binomial random variable with parameter P. Compute its MGF and hence find the mean of X (8 mks)