(£5)

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2017/2018 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

MAIN EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION

AND BACHELOR OF SCIENCE

COURSE CODE:

STA 241

COURSE TITLE:

STATISTICS AND PROBABILITY

DATE:

08/08/18

TIME: 9 AM -11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

Question 1 Compulsory (30 marks)

a) State 5 characteristics of a binomial distribution

(5 marks)

b) The discrete random variable Y had the following probability distribution: (Y can only assume values 0, 1,2 and 3).

v	0	1	2	3
P(y)	1/2	1/4	1/5	?

i) What is the missing probability p(3)

(2 marks)

ii) Find the mean and variance of Y.

(4 marks)

- c) Four-week summer totals in section of the Midwest United States have approximately a gamma distribution with $\alpha = 1.6$ and $\beta = 4.0$. Find the mean and variance of the fourweek rainfall totals (2 marks)
- d) Suppose that Y has density function

$$f(y) = \begin{cases} cy, 0 \le y \le 2, \\ 0, \text{ elsewhere} \end{cases}$$

- i) Find the value of C that makes f(y) a probability density function (2 marks)
- ii) Find $p(1 \le y \le 2)$ (2 marks)
- iii) Find $p(y \ge \frac{1}{2})$ (2 marks)
- e) The achievement scores for a college entrance examination are normally distributed with mean 75 and standard deviation 10. What fraction of the scores lies between 80 and 90?

 (4 marks)
- f) Let Y be a random variable with moment-generating function $m(t) = \frac{1}{4}e^t + \frac{1}{4}e^{2t} + \frac{1}{2}e^{3t}$.

Find (i) E(Y)

(3 marks)

(ii) V(Y)

(4 marks)

(iii) The distribution of Y

(1 marks)

g)	Customers arrive at a checkout counter in a department store according distribution at an average of seven per hour. During a given hour, probabilitythat at least two customers arrive?	to a Poisson what is the (2 marks)				
h)	A random variable X follows $X \sim N(20,5)$, find the p(14 $\leq X \leq 23$)	(3 marks)				
Question 2 (20 marks)						
a) A random variable Y follows a binomial distribution with n trials and probability of success p, show that						
(i)	(i) The moment-generating function for Y is $m(t) = (pe^t + q)^n$,					
(i	E[Y] = np	(3 marks)				
(i	ii) $V[Y] = npq$, where $q = 1 - p$	(5 marks)				
b)	A large shipment of books contains 5% with imperfect bindings. Use approximation of the binomial distribution to compute the probability that books:	the Poisson among 100				
-	 (i) At most 3 will have imperfect bindings (ii) Exactly 5 will have imperfect bindings (iii) At least 4 will have imperfect bindings 	(3 marks) (3 marks) (4 marks)				
	Question 3 (20 marks)					
a)	Given that $X \sim N(200,0.48)$, use normal approximation to evaluate $p(90 \le X)$	≤ 105) (5 marks)				
b)	A committee of 4 people is to be selected at random from among 10 people are women and 7 are men. If Y denotes the number of women selected, deprobability distribution of Y.	, of whom 3 etermine the (6 marks)				
c)	The time in minutes taken by a milk man to deliver milk to a nearby dairy distributed with a mean of 12 minutes and a variance of 4 minutes. Estimate of days during the year when he takes	is normally the number				
	i) Longer than 17 min					
ii) Less than 10 min						
	iii) Between 9 min and 13 min	3 marks)				

(3 marks)