

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE (INFORMATION TECHNOLOGY)

COURSE CODE:

STA 225

COURSE TITLE: PROBABILITY AND STATISTICS II

DATE: 31/07/18

TIME: 2 PM -4 PM

INSTRUCTIONS TO CANDIDATES Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE [30MARKS]

- a.) Differentiate between a discrete random variable and a continuous random variable. Give one example in each case.
- b.) Let X be a random variable with a Poisson distribution $f(x) = \begin{cases} e^{-\lambda} \lambda^x, x = 0, 1, 2, \dots \\ o, elsewhere \end{cases}$ where λ a constant. Show is that f(x) is a discrete P.d.f. [4marks]
- c.) A continuous random variable X has probability distribution given by

$$f(x) = \begin{cases} \frac{6x-4}{15} & 0 \le x \le 3\\ o, otherwise \end{cases}$$

i.) Show that f(x) is a continuous P.d.f.

[4marks]

ii.) Calculate the probability P $(1 \le X \le 2)$

[3marks]

- d.) Consider the P.d.f given by $f(x) = \begin{cases} \frac{1}{18}(3+2x), 2 \le x \le 4 \\ o, elsewhere \end{cases}$. Find:
 - i.) E(x)

[3marks]

ii.) $E(x^2)$ and hence var(x)

[5marks]

- e.) Let X be a random variable with density function given as $f(x) = \begin{cases} \theta e^{-\theta x}, x \ge 0 \\ 0, otherwise \end{cases}$. Find:
 - i.) the M.g.f. of X

[4marks]

ii.) the mean of X

[3marks]

QUESTION TWO [20MARKS]

- a.) A company that makes sweets has a label weight 20.4grams of each sweet. Assume that the distribution of the weight of these sweet is normal with mean 21.37grams and standard deviation of 0.4grams.Let X denote the weight of a single sweet selected at random from the production .Find: i.) $P(x \ge 22.07)$ [3marks]
 - ii.) The number of sweets with weight less than 20.4grams as indicated in the label in a packet of 2,500 sweets. [4marks]
- b.) If X is a random variable with probability density function

$$f(x) = \begin{cases} \left(\frac{32}{63}\right) \frac{1}{2^x}, & x = 0,1,2,3,4,5\\ o, & otherwise \end{cases}, \text{ Find: } E(x)$$
 [3marks]

ii.) Var(x) [3marks]

c.) A random variable X has a Poisson distribution such that 3P(X=1) = P(X=2).

Find: $P(X \le 3)$

[7marks]

QUESTION THREE [20MARKS]

- a.) Define the moment generating function of a random variable X where it exists. [2marks]
- b.) i.) Show that the moment generating function of a binomial distribution is given by

$$M_x(t) = (Pe^t + q)^n$$

[6marks]

ii.) Hence find the mean and variance of X.

[6marks]

- c.) The Bungoma county government has installed 100 electric lamps in Bungoma town. The lamps have an average lifetime of 1000 burning hours with standard deviation 200 hours assuming normality.
 - i.) Find the numbers of lamps that are expected to fail in the first 800 hours of burning.

[3marks]

ii.) Find after how many hours of burning would 10% of the lamps be expected to fail.

[3marks]

QUESTION FOUR [20MARKS]

a.) A random variable X has a probability density function given by

$$f(x) = \begin{cases} (m + nx^2), & 0 < x < 1 \\ o, & otherwise \end{cases}$$
. Given that $E(X) = \frac{2}{3}$, determine the value of m and n. [6marks]

b.) In a firm that manufactures watches, 280 watches are inspected and the numbers of defective per set are recorded.

Number of defective	Number of sets		
0	20		
1	100		
2	72		
3	35		
4	43		
5	10		

i.) Estimate the average number of defective per set and expected frequency of 0, 1,2,3,4 and5. [2marks]

ii.) Fit a Poisson distribution of the data.

[8marks]

QUESTION FIVE [20MARKS]

The random variable Z has the probability distribution as shown in the table below

Z	2	3	5	7	11
P(z)	1/6	1/3	1/4	a	В

If E [Z] = $\frac{14}{3}$, find: i.)the value of a and b.

[6marks]

ii.)the variance of Z

[5marks]

b.)
$$f(x) = \begin{cases} \left(\frac{1}{3}\right)^x \left(\frac{2}{3}\right), & x = 0,1,2,\dots \\ o, & elsewhere \end{cases}$$
 Determine the factorial moment generating function of X. Hence compute the mean. [9marks]