

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2017/2018 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: 9

STA 205

COURSE TITLE:

INTRODUCTION TO STATISTICS AND

PROBABILITY

DATE:

17/10/18

TIME: 11.30 AM -1.30 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

a)	Define what is meant by												
	i) Null hypothesis												
	ii)												
	iii) Estimation												
	iv) Power of the test								(4 marks)				
b)	A machine produced 20 defective articles in the batch of 400. After overhauling it produced												
	10 defectives in a batch of 300. Has the machine improved?								(4 marks)				
c)	Two independent samples of 7 and 6 gave the following values;												
	Sam	ple A	9	11	13	15	9	12	15				
	Sam	ple B	11	12	10	9	8	10					
Ex	amine v	whether	the differe	ence between	n the means of	f the two sam	ples is sign	ificant at	5%				
lev	vel of significance. (8								marks)				
d)	In a hospital 480 female and 520 male babies we\re born in a week. Do these figures confirm the hypothesis that males and females are born in equal number at 5% significance level (4 marks)												
e)	Differ	entiate b	etween ax	ciomatic app	roach to proba	ability and cla	assical appr	oach to j	orobability				
								(2m	arks)				
f)	In an investigation to estimate the mean weight in Kg of 15 year old children in a particular												
	region, a random sample of 100 children is selected. Previous study indicate that the variance												
	of weights of such children is 3.0 Kg. Suppose the sample mean weight is 38.4 Kg, estimate												
	the population mean weight of all 15 years old children in the region assuming that these												
	weights are normally distributed. Use $\alpha = 5\%$.								(5 marks)				

- g) The random variable X is distributed B (7, 0.2). Find correct to three decimal places
 - i. P(X=3)
 - ii. $P(1 < X \le 4)$
 - iii. P(X > 1)

(3marks)

QUESTION TWO (20 MARKS)

- a) State the reasons for the increase in the use of non-parametric tests in research. (3 marks)
- b) Two random sample were drawn from two normal populations and their values were

84 88 90 92 76 82 66 67 75 A 74 78 82 85 87 92 93 95 В 64 66

At 5% level of significance test whether the two populations have the same variance (10 marks)

- c) A batch of parts contains 100 parts from a local supplier of tubing and 200 parts from a supplier of tubing in the next state. If four parts are selected randomly and without replacement. What is the probability that;
 - (i) Two or more parts in the sample are from the local suppliers (4 marks)
 - (ii) Atleast one part in the sample is from the local supplier (3 marks)

QUESTION THREE (20 MARKS)

a) State three assumptions made in the determination of F-test.

(3 Marks)

97

b) A manufacturer of car batteries guarantees that his batteries will last, on the average of 3 years with a standard deviation of 1 year. If 5 of these batteries have lifetimes of 1.9, 2.4, 3.0, 3.5 and 4.2 years. Is the manufacturer still convinced that his batteries have a standard deviation of 1 year at $\alpha = 0.05$? (7 marks)

QUESTION FIVE (20 MARKS)

- a) Define the following terms as used in statistical inference
 - i. Confidence interval
 - ii. Estimator
 - iii. Parameter
 - iv. Statistic
 - v. Random variable

(5marks)

b) In a one hour period, the number of gallons of a certain toxic chemical that is produced at a local plant say Y has the following pmf

Y	0	1	2	3
$P_{\nu}(Y)$	0.2	0.3	0.3	0.2

- (i) Compute the expected number of gallons produced during a one-hour period (2 marks).
- (ii) The cost (in hundreds of dollars) to produce Y gallons is given by the cost function $C(Y) = 3 + 12Y + 2Y^2$. What is the expected cost in a one hour period? (6 marks).
- c) A random sample of 11 bags were selected from a machine packaging wheat flour in bags marked 1 kg. The actual weight of each flour in kgs were 1.017, 1.051, 1.078, 0.997, 1.033, 0.996, 1.059, 1.082, 1.014, 1.072 and 0.998. Construct a 95% C.I for the mean weight of flour in bags marked 1 kg assuming the weights are normally distributed. (7 marks)