

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER SPECIAL EXAMINATIONS

FOR THE DEGREE OF MASTER OF SCIENCE IN PHYSICS

COURSE CODE:

SPH 810

COURSE TITLE:

CLASSICAL MECHANICS

DURATION: 3 HOURS

DATE: 14THSEPTEMBER 2017 TIME: 9:00 AM - 12:00PM

INSTRUCTIONS TO CANDIDATES

Answer QUESTION ONE (Compulsory) and any other two (2) Questions.

Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page.

This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE (30 MARKS)

- a) Give a brief account of the history, failures and directions of classical mechanics (3 marks)
- b) State the three conservative theorems for a single particle dynamics (3 marks)
- c) State and explain the two types of constraints for any given particle system (2 marks)
- d) Define elastic and inelastic collisions giving examples of each case. (2 marks)
- e) Discuss the principle of conservation of energy and momentum (3 marks)
- f) Show that for a single particle with constant mass the equation of motion implies the following differential equation for kinetic energy $\frac{dT}{dt} = F \cdot v$ while if the mass varies with time the corresponding equation is $\frac{d(mT)}{dt} = F \cdot p$ (3 marks)
- g) Prove that the magnitude R of the position vector for the center of mass from an arbitrary origin is given by the equation:

$$M^{2}R^{2} = M\sum_{i} m_{i}r_{i}^{2} - \frac{1}{2}\sum_{i,j} m_{i}m_{j}r_{ij}^{2}$$
 (3 marks)

- h) Write D'Alembert's principle. Discuss how dynamics get converted to statics. (3 marks)
- i) A particle of mass m moves in one dimension such that it has the Lagrangian

$$L = \frac{m^2 \dot{x}^4}{12} - m \dot{x}^2 V(x) - V^2(x)$$

where V is some differentiable function of x. Find the equation of motion forx(t) and describe the physical nature of the system on the basis of this system. (3 marks)

- j) Consider a uniform thin disk that rolls without slipping on a horizontal plane. A horizontal plane is applied to the centre of the disk and in the direction parallel to the plane of the disk.
- (i) Derive the Lagrange's equation and find the generalized force. (2 marks)
- (ii) Discuss the motion if the force is not applied parallel to the plane of the disk.(3marks)

QUESTION TWO (20 MARKS)

Assume that a particle of mass M_1 moving velocity V_1 collides with a particle of mass M_2 at rest and sticks to it. Describe the motion of mass $M=M_1+M_2$ after collision. Calculate the ratio of K_f (final kinetic energy) and K_i (initial kinetic energy), and discuss that the collision is inelastic. Give other examples of such a collision. (20 marks)

QUESTION THREE (20MARKS)

a) Obtain the equation of motion for a particle falling vertically under the influence of gravity when the frictional forces obtainable from a dissipation function $\frac{1}{2}kv^2$ are

present. Integrate the equation to obtain the velocity as a function of time and show that the maximum possible velocity for a fall from rest is $v + \frac{mg}{k}$. (14 marks)

b) Describe the motion of a particle in a plane in polar coordinates. (6 marks)

QUESTION FOUR (20 MARKS)

- (a) Solve the problem of the motion of a point projectile in a vertical plane, using the Hamilton-Jacobi method. Find both the equation of the trajectory and the dependence of the coordinates on time, assuming the projectile is fired off at time t = 0 from the origin with the velocity v_0 , making an angle θ with the horizontal. (10 marks)
- (b) Show by use of Poisson brackets that for one-dimensional harmonic oscillator, there is a constant of the motion μ defined as $\mu(q,p,t)=\ln(p+im\omega q)-i\omega t$, $\omega=\sqrt{\frac{k}{m}}$

What is the physical significance of this constant of motion? (10 marks)

QUESTION FIVE (20 MARKS)

The transformation equations between two sets of equations are

- a) Show directly from these transformation equations that Q, P are canonical variables if q and p are. (10 marks)
- k) Show that the function that generates this transformation is F_3 =- $(e^Q-1)^2$ tan(p). (10marks)