

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF B.ED (SCIENCE) AND BSC (PHYSICS)

COURSE CODE:

SPH 415

COURSE TITLE:

THERMODYNAMICS

DURATION: 2 HOURS

DATE: 1/8//2018 TIME: 9 - 11AM

INSTRUCTIONS TO CANDIDATES

Answer QUESTION ONE (Compulsory) and any other two (2) Questions.

Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page.

This paper consists of 4 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

USEFUL CONSTANTS

 $R=8.31 J/K.\,mo\,l=0.082 L.atm/mol.K$

QUESTION ONE (30 MARKS)

QUESTION ONE (SU MARKS)		
(a)	Define the following terms	
	(i) A thermodynamic system	(2 marks)
	(ii) A system boundary	(2 marks)
(b)	Differentiate between the following	
	(i) An open system and a closed system	(2 marks)
	(ii) Adiabatic wall and diathermic wall	(2 marks)
	(iii) A reversible process and a cyclic process.	(2 marks)
(c)	Given the following constants for the van der Waals equation for carbon dioxide $a = 0.37Nm4mol^{-2}$ and $b = 43Cm^3mol^{-1}$. Using the Van der	
	Waals equation find the pressure exerted by carbon dioxide gas at $0^{\circ}C$ if it has a specific volume of $0.55Lmol^{-1}$.	(3 marks)
(d)	A fluid of volume 0.05m^3 is contained behind a piston at pressure	
	of $1.0 \times 106 N/m^2$. After a reversible expansion of constant pressure the	
	final volume is $0.2m^3$. Calculate the work done by the fluid.	(3 marks)
(e)	Air is expanded reversibly behind a piston according to a law PV = constant. If the final volume is twice the initial volume and the work	
	done on the fluid during the expansions is 3.47 x $10^4 Nm$. Determine the	(3 marks)
	initial volume and pressure if the final volume is $0.5m^3$.	
(f)	State the first law of thermodynamics	(1 mark)
(g)	An ideal gas absorbs $5 \times 10^3 J$ of energy while doing work of $2 \times 10^3 J$ to its	
	surroundings. Find the change in internal energy.	(3 marks)
(h)	An engine absorbs heat at 227°C and rejects at 27°C. Determine its	
	efficiency.	(3 marks)
(i)	Show that for a monoatomic ideal gas undergoing adiabatic process	
	$TV^{2}/_{3} = C$ where C is a constant.	(4 marks)

QUESTION TWO (20 MARKS)

- (a) Given that in a PVT system the differential changes in P are related to those in V and T by the equation $\partial P = \left(\frac{\partial P}{\partial V}\right)_T \partial V + \left(\frac{\partial P}{\partial V}\right)_V \partial T$. Using the volume expansivity β and isothermal compressibility κ show that at constant volume $(P_2 P_1) = \frac{\beta}{\kappa} (T_2 T_1)$ when the pressure and volume changes (8 marks)
- (b) When a gas expands adiabatically its volume is doubled while its absolute temperature is decreased by a factor of 1.32. Calculate the degree of freedom for the gas molecule.

(4 marks)

(c) Show that the work done on a gas during an adiabatic compression from (P_1, V_1) to (P_2, V_2) is given by $W = \frac{1}{\gamma - 1} (P_2 V_2 - P_1 V_1)$. (8 marks)

QUESTION THREE 20 MARKS.

- (a) State second law of thermodynamics. (1 mark)
- (b) Define the following terms as used in thermodynamics
 - (i) Work (1 mark)
 - (ii) Quasi-static process (1 mark)
- (c) Given the ideal gas equation PV = nRT where all the symbols have their usual meaning:
 - (i) Derive the expression for work done on the gas (6 marks)
 - (ii) Calculate the work done for 2 *moles* if an ideal gas were kept constant temperature $0^{\circ}C$ if the gas was compressed from a volume of 4L to 1L. (5 marks)
- (d) Two Carnot engines A and B are operated in series. A receives heat from source at 900K and rejects to sink at TK. The rejected heat is taken by B which further rejects to the sink at 400K. Find T if the efficiency of both engines are same.
 (6 marks)

QUESTION FOUR (20 MARKS)

- (a) Given a PVT system
 - (i) Define the term enthalpy H (1 marks)
 - (ii) If the basic expression for enthalpy is given by H = U + PV show that dH = dQ + VdP. (6 marks)
- (b) Write the expression for the different form of the first law of thermodynamics for each of the following cases:
 - (i) Stretched wire (2 marks)
 - (ii) Surface film (2 marks)
 - (iii) A paramagnetic solid (2 marks)
- (c) Define the term entropy (2 marks)
- (d) State the third law of thermodynamics (2 marks)
- (e) Determine the value of the specific entropy of water at $100^{\circ}C$. (3 marks)

QUESTION FIVE (20 MARKS)

- (a) Define the following processes: isobaric, adiabatic, isochoric and isothermal. (4 marks)
- (b) For an ideal gas derive expressions for molar specific heat at constant volume (C_V) and pressure (C_P) in terms of internal energy U and enthalpy H. (6 marks)
- (c) A monoatomic ideal gas at $2x10^5 Pa$ and initial temperature of $20^0 C$ expands slowly at constant pressure from 1L to 2.5L. Find the work done on the surrounding, change in internal energy and the thermal energy absorbed by the gas. (6 marks)
- (d) A monoatomic ideal gas has temperature of **300** K and a constant volume of **1.5** L. If there are 5 moles of the gas and its temperature raised to **380** K find the thermal energy added hence calculate the added thermal energy if the gas is diatomic. (4 marks)