

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN PHYSICS

COURSE CODE:

SPH 414

COURSE TITLE:

QUANTUM MECHANICS II

DURATION: 2 HOURS

DATE: 3/8/2018 TIME: 2-4PM

INSTRUCTIONS TO CANDIDATES

Answer QUESTION ONE (Compulsory) and any other TWO (2) Questions.

- Question one carries 30 MARKS while all the other questions 20 MARKS each.

The following rules of commutators algebra may be used

• [A, B] = AB - BA = -[B, A]

• [A + B, C] = [A, C] + [B, C]

• [AB, C] = A[B, C] + [A, C]B

QUESTION ONE(30 MARKS)

- a) Mathematically define the quantized linear momentum operator (1 mark)
- b) By considering the mathematical definition of angular momentum and the quantized linear momentum operator, express L_x , L_y and L_z in terms of \hbar ? (9 marks)
- c) Solve the following commutation $[p_x, x]$ (5 marks)
- d) Given that the spin for electrons is given by the matrices

$$s_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, s_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
 and $s_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

By noting that $i^2 = -1$, show that

$$i) \left[s_x, s_y \right] = i\hbar s_z \tag{5 marks}$$

$$(5 \text{ marks})$$

$$iii) [s_z, s_x] = i\hbar s_y$$
 (5 marks)

QUESTION TWO (20 MARKS)

Find the commutators:

(i). $[X, L_{\nu}]$	(3 marks)
(ii). $[X, L_z]$	(3 marks)
(iii). $[P_x, L_y]$	(4 marks)
(iv). $[P_x, L_z]$	(4 marks)
(v). $[ZP_x, L_z]$	(6 marks)

 $(V). \quad [ZP_X, L_Z]$

QUESTION THREE (20 MARKS)

Given the fact that $[\vec{J}_l, \vec{J}_m] = i\hbar \vec{J}_n$ where l, m, n = 1, 2, 3 are the permutation relations in the first, second and third dimension. Show that

a)
$$[\vec{J}_{x}^{2}, \vec{J}_{y}] = -\hbar^{2}\vec{J}_{y} + 2i\hbar\vec{J}_{x}\vec{J}_{z}$$
 (5 marks)
b) $[\vec{J}_{z}^{2}, \vec{J}_{y}] = \hbar^{2}\vec{J}_{y} - 2i\hbar\vec{J}_{x}\vec{J}_{z}$ (5 marks)
c) $[J^{2}, \vec{J}_{y}] = 0$ (5 marks)
d) $[J^{2}, \vec{J}_{x}] = 0$ (5 marks)

QUESTION FOUR (20 MARKS)

Given that \hat{L}_{\pm} and \hat{R}_{\pm} are defined by $\hat{L}_{\pm} = \hat{L}_{x} \pm i\hat{L}_{y}$ and $\hat{R}_{\pm} = \hat{X} \pm i\hat{Y}$. Prove the following

a)
$$[\hat{L}_{+}, \hat{R}_{+}] = 0$$
 (10 marks)
b) $[\hat{L}_{+}, \hat{R}_{-}] = 2\hbar\hat{Z}$ (10 marks)

QUESTION FIVE (20 MARKS)

One description of spin 1 particles uses the matrices $M_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$,

$$M_y = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}$$
, and $M_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ Show that

a)
$$[M_x, M_y] = iM_z$$

b) $M^2 = M_x^2 + M_y^2 + M_z^2 = 2I$ Where *I* is a unit matrix
c) $[M^2, M_y] = 0$

(7 marks) (7 marks)

(6 marks)