

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER SUPPLEMENTARY/ SPECIAL EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN PHYSICS AND BACHELOR OF EDUCATION (SCIENCE)

COURSE CODE:

SPH 314

COURSE TITLE:

ELECTROMAGNETISM

DURATION: 2 HOURS

DATE: 12/10/2018

TIME: 3-5PM

INSTRUCTIONS

- a) Answer question **ONE** and any other **TWO** of the remaining
- b) Question ONE carries 30MARKS and the remaining carry 20 MARKS each.
- c) Symbols used bear usual meaning.

QUESTION ONE (30 MARKS)

- a) In terms of direction of magnetic field flux and magnetization differentiate between paramagnets and diamagnets (2marks)
- b) Differentiate between paramagnetism and diamagnetism in terms of (4marks)
 - i. Magnetic susceptibility
 - ii. Magnetic permeability
 - iii. Relative permeability
 - iv. Temperature dependence
- c) Define the following terms

(2marks)

- i. Magnetic flux
- ii. Magnetic hysteresis
- d) Consider an electron rotating around its orbit with current *I*, sweeping an area *ds*. Show that its magnetic moment $m = \frac{1}{2}evr$. (4marks)
- e) Given $\vec{B} = \mu_0 (\vec{H} + \vec{M})$, show that $\chi = \frac{\mu_m}{\mu_0} 1$ (3marks)
- f) A toroid wound with 80turns/m of wire carries a current of 10A. The torus is iron which has a magnetic permeability, $\mu_m = 2400\mu_0$ under given condition. Find H and B inside the iron (4marks)
- g) State Curie-Weiss law

(2marks)

h) At what point is Curie's law invalid

- (2marks)
- i) A loop of wire is placed in a uniform magnetic field. For what orientation of the loop is the magnetic flux a maximum? (1mark)
- j) State Faraday's law of induction?

(2marks)

k) State Lenz's law

(2marks)

1) Define Poynting vector

(2marks)

QUESTION TWO (20 MARKS)

- a) A toroid wound with 80 turns/m of wire carries a current of 10A. The torus is iron which has a magnetic permeability, $\mu_m = 2400\mu_0$ under given condition. Find H and B inside the iron (4marks)
- b) Consider a thin, straight wire carrying a constant current I and placed along the x axis as shown in Figure below.
 - (i) Determine the magnitude and direction of the magnetic field at point P due to this current in terms of angle θ . (12 marks)

(ii) Suppose the wire is infinitely long, determine the magnitude of the magnetic field at point P (4 marks)

QUESTION THREE (20 MARKS)

- a) Find the time constant of the circuit shown in Fig. 4 (3 marks)
- b) The switch in Fig. 4 is closed at t = 0. Calculate the current in the circuit at t = 2.00 ms (4 marks)

- c) From Curie-Weiss law show that total magnetic dipole moment acting on a volume v, is given by $C \frac{B_0}{T} v$ where C is Curie's constant, B_0 is the applied external field, T is the Curie temperature. (4marks)
- d) Given a region whose field is due to a solenoid with total magnetic flux density \vec{B} such that $\vec{B} = \vec{B_0} + \vec{B_m}$ where $\vec{B_0}$ is the field due to current carrying conductor while $\vec{B_m}$ is the field produced by the magnetic substance, show that $\vec{B} = \mu_0(\vec{H} + \vec{M})$ (9 marks)

QUESTION FOUR (20 MARKS)

a) A metal ring is placed near a solenoid, as shown in Fig. 1 below

Fig. 1

Find the direction of the induced current in the ring

- i. At the instant the switch in the circuit containing the solenoid is thrown closed
 - (1mark)
- ii. After the switch has been closed for several seconds (1mark)
- iii. At the instant the switch is thrown open (1mark)
- b) State four different ways in which an emf can be induced in a given circuit (4 marks)
- c) Briefly explain any two applications of Faraday's law of induction? (8 marks)
- d) A coil consists of 200 turns of wire. Each turn is a square of side 18 cm, and a uniform magnetic field directed perpendicular to the plane of the coil is turned on. If the field changes linearly from 0 to 0.50 T in 0.80 s, what is the magnitude of the induced emf in the coil while the field is changing? (5marks)

QUESTION FIVE (20 MARKS)

a) A long solenoid of radius R has n turns of wire per unit length and carries a time-varying current that varies sinusoidally as $I = I_{max} \cos \omega t$, where I_{max} is the maximum current and ω is the angular frequency of the alternating current source as shown in Fig. 2

Fig. 2

- i. Determine the magnitude of the induced electric field outside the solenoid at a distance r > R from its long central axis. (7marks)
- ii. What is the magnitude of the induced electric field inside the solenoid, a distance r from its axis? (4marks)
- b) Consider the circuit shown in the Fig. 3, which contains a battery of negligible internal resistance, resistor R and an inductor L connected at terminals "a" and "b".

Fig. 3

Apply Kirchhoff's loop rule to this circuit, traversing the circuit in the clockwise direction, and hence show that the current flowing in the circuit (I) is given by

$$I = \frac{\varepsilon}{R} \left(1 - e^{-t/\tau} \right)$$
, given that $\tau = \frac{L}{R}$ (9 marks)