

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATIONS

FOR

BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION (SCIENCE)

COURSE CODE: SPH 210

COURSE TITLE: ELECTRICITY AND MAGNETISM

DURATION: 2 HOURS

DATE: 19TH SEPTEMBER 2017 TIME: 8 - 10AM

INSTRUCTIONS TO CANDIDATES

- Answer question **ONE** and any other **THREE** questions.

Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page.

This paper consists of 5 printed pages. Please Turn Over

The following constants may be used;

Mass of an electron, Me=9.11×10-31kg

Electronic charge, e=1.602×10⁻¹⁹C

Permeability of free space, μ_0 =4 π ×10⁻⁷N/Am

Permittivity of free space, ϵ_0 =8.85×10⁻¹²F/m

QUESTION ONE(30MARKS)

(a). State Ampere's law.

(1mark)

- (b). An ideal infinitely long solenoid has n turns per unit length and carries a current I. Use Ampere's law to find the magnetic field at the centre of the solenoid. (4marks)
- (c).(i) A cell of e.m.f, ε and internal resistance r is connected to a resistor R. For what value of R will the power supply to the load resistor be maximum? (3marks)
 - (ii) Give one practical application of the condition stated in c (i)? (1mark)
- (d). State kirchoff's voltage law.

(1mark)

- (e). A galvanometer for which 15mA gives a full scale deflection and has resistance of 5.0Ω . It is required to convert it into an ammeter of full scale deflection of 1.5A.Calculate the value of the shunt. (3marks)
- (f). Consider a rectangular coil of length l and breadth b in a magnetic field \vec{B} at an angle ϕ to the coil and carrying a current l. Show that such a coil of N turns experiences a torque, τ given by;
- $\tau = NAIBcos\phi$ where *A* is cross section area the coil. (4marks)
- (g). Three identical positive charges of charge Q are placed at the corners of an equilateral triangle of side a as shown in figure 1.Show that the net force on Q_1 is given by; $F = \frac{\sqrt{3}KQ^2}{a^2}$. (5marks)

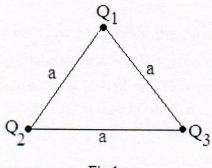


Fig 1

- (h). A $5\mu F$ capacitor is charged to a p.d of 200V and isolated. It is then connected in parallel to a $10\mu F$ capacitor. Find the resultant p.d of the parallel connection and the energy stored before connection. (5marks)
- (i). Show that the electric force field given by $\vec{F} = by^3\hat{\imath} + 3bxy^2\hat{\jmath} + cz^2\hat{k}$ is conservative. (3marks)

QUESTION TWO (20 MARKS)

(a) Define magnetic field intensity, \vec{B} .

(1mark)

(b) A positive charge of mass *m* is shot into a magnetic field with velocity *v* as shown in figure 2. It is observed that it moves in a circular path. Show that its period of rotation is given by;

$$T = \frac{2\pi m}{qB}$$
 where *B* is the magnetic field strength.

(5marks)

Fig.2

(c) The heating element of a heater is rated 1kW when operating at 240V. Determine the current through it. Also calculate its power consumption when the p.d drops to 120V. (3marks)

- (d) Using Gauss's law prove that the capacitance of a parallel plate capacitor with plate separation distance, d and plate area A is $C = \frac{\varepsilon_0 A}{d}$. (4marks)
- (e) Two positive charges 10.0 nc and 15.0 nc are separated by 50 mm. What is the electric field intensity, E, resulting at a point ,P, 40 mm from charge 15.0 nc and 30mm from the charge 10.0 nc?(7marks)

QUESTION THREE(20 MARKS)

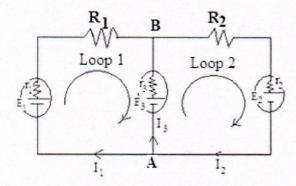


Figure 3

- (a) Using the circuit in figure 3, determine the currents I_1 , I_2 , I_3 , given that r_1 = r_2 = 2Ω , r_3 = 1Ω , R_1 = 4Ω , R_2 = 3Ω , E_1 =15V, E_2 =6V, E_3 =4V. (6marks)
- (b) Compute V_{BA}. (2marks)
- (c) Distinguish the following terms; resistance and resistivity, conductance and conductivity. (2marks)
- (d). A parallel plate capacitor whose plates have an area 1.0 m², which are separated by 2 mm is connected across the terminals of 100V battery. Calculate
 - i. The electric field between the plates
 - ii. The magnitude of **charge density** between the plates
 - iii. The capacitance of the system
 - iv. Repeat i., ii., iii., above if the space between the plates are filled with a dielectric of relative permittivity 3. (10marks)

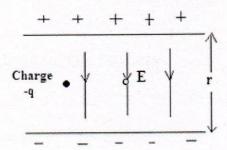
QUESTION FOUR (20 MARKS)

(a) State the superposition theory of electrostatics.

(1mark)

- (b) A thunder cloud may hold a negative charge of 100C at a mean height of 5km and a similar but positive charge at a mean height of 9km. Estimate the force between the clouds. (5 marks)
- (c) An elemental charge dQ along a wire of continuous charge distribution exerts a force on an isolated charge Q at a perpendicular distance a given by;
- $dF = \frac{KQ\lambda dl}{r^2}$ where λ is the line density of charge and r is the distance between a length element dl and the isolated charge. Show that total force on the isolated charge is $F = \frac{2KQ\lambda}{a}$. (8 marks)
- (d)State and explain three factors on which magnetic force on a current carrying conductor depends on when placed in a magnetic field. (6 marks)

QUESTION FIVE(20 marks)


(a) What are equipotential lines?

(1mark)

(b) State Gauss's law and give its mathematical expression.

(2marks)

- (c) A potential is given by; V = 3xyV/m. Given that $\vec{E} = -\nabla V$, find the components of the electric field \vec{E} (3marks)
- (d) Consider a uniform electric field inside a parallel plate capacitor as shown below;

If a charged particle of charge q is stationary between the plates, show that the p.d, V across the plates is given by $V = \frac{mgr}{q}$ where m is the mass of the charged particle.

Now the particle starts moving with velocity u. Ignoring the effect of gravitational force, show that the vertical displacement y covered is given by;

$$y = \frac{1}{2} \left(\frac{q}{m} \right) E t^2$$
 where t is time taken to reach the plate. (8 marks)

(e) A capacitor has 2 dielectric materials of relative permittivity ε_1 and ε_2 . If the plate area is A, compute the capacitance of the capacitor in two alternative ways. **(6marks)**