

KIBABII UNIVERSITY

2017/2018 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER

MAIN EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN B.ED AND BSC (PHYSICS)

COURSE CODE: SPH111

COURSE TITLE: FUNDAMENTALS OF PHYSICS II

DATE:

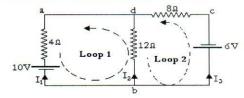
9/8/2018

TIME: 2-4PM

INSTRUCTIONS TO CANDIDATES

Answer question ONE and any other two questions

This paper consists of 4 printed pages. Please Turn over


The following physical quantities may be useful.

- Mass of an electron = $9.11 \times 10^{-31} \text{Kg}$
- $q_0 = e = 1.6 \times 10^{-19} \text{C}$
- $\varepsilon_0 = 8.85 \times 10^{-12} C^2 / N.m^2$
- $\mu_0 = 4\pi x \ 10^{-7} m/A$
- Refractive index of air, $\eta_{air} = 1.00$
- Refractive index of water, $\eta_{water} = 1.33$
- $R = 1.1 \times 10^{-7} \, m^{-1}$
- 1a.m.u = 931.5 MeV

Question ONE (30 marks)

- a) A parallel plate capacitor with air between the plates has capacitance of 1.77×10^{-12} F and area $A = 0.0002m^2$. Find the distance of separation between the plates. (3 marks)
- b) Calculate the inductance of an air core solenoid containing 1000 turns. If the length of the solenoid is 0.2m and its cross-sectional area is $0.04m^2$ (3 marks)
- c) Consider the circuit below. Calculate the currents I₁, I₂ and I₃.

(4 marks)

- d) A series RLC AC circuit has R = 400 Ω , L = 1.00H, C = 3.00 μF , ω = 370 s^{-1} and ΔV_{max} = 150V. Determine:
 - (i) The inductive reactance, the capacitive reactance and the impedance of the circuit.
 - (ii) The maximum current in the circuit.
 - (iii) The phase angle of the current and the voltage.

(6 marks)

e) By considering a material whose magnetization is M exposed to a magnetic field H, show that $\mu_r = 1 + \chi$ where symbols have their usual meanings. (4 marks)

Question TWO (20 marks)

a) (i) Define capacitance and state its SI units.

(2 mark)

- (ii) If the charge on a capacitor at any given time t is $Q = Q_0 \left(1 e^{-\frac{t}{RC}}\right)$, where $R = 1k\Omega$ and $C = 10 \mu F$, how long does it take for a capacitor to be charged to 80% of its maximum charge? (3 marks)
- b)An electron in a TV picture tube moves towards the front of the tube with a speed of $8 \times 10^6 \, m/s$ along the x-axis through a magnetic field of magnitude 0.025T, at an angle of 60° . Calculate the magnetic force on the electron. (3 marks)
- c) A rectangular coil of area $4.59 \times 10^1 cm^2$ consists of 25 turns of wire and carries a current of 15mA. A $3.5 \times 10^{-1} T$ magnetic field is applied to the plane of the loop. Calculate: Magnitude of its magnetic dipole moment. (3 marks)
- d) Differentiate between p-type and n-type semiconductors.

(2 marks)

e) Give one use of a CRO.

(1 mark)

f) State the laws of reflection of light.

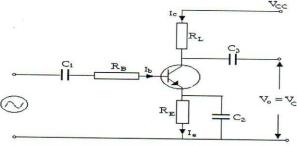
(2 marks)

g) (i) State Kirchhoff's current and voltage laws. marks)

(2

- (ii) A 500cm long copper rod has a resistance of 1.8Ω . If the diameter of the copper rod is 0.5cm, what is the resistivity of the rod? (3 marks)
- h) (i) Why is it that white light sources are not used in Young's double-slit experiment?

(1 mark)


(1

- (ii) A converging lens has two surfaces with radii of curvature $R_1 = 0.8$ m and $R_2 = 0.4$ m to the left of the lens for which $\eta = 1.5$. Find the power of the lens. (3 marks)
- i) When an R-L-C circuit is driven in resonance, what is the impedance? marks)
- j) (i) Define half-life. (1 mark)
- (ii) How long does it take for 60% of a radioactive sample of half-life 3.8 days to decay?

(3 marks)

Question THREE (20 marks)

- a) Explain with a well labelled diagram the working of a CRO. (6 marks)
- b) Name any two donor impurities of germanium. (2 marks)
- c) Explain why n-p-n transistors are widely used in high frequency applications as opposed to p-n-p transistors? (1 marks)
- d) Sketch a circuit of a center tapped full-wave rectifier and explain how rectification is achieved. (6 marks)
- d) Consider a transistor circuit below (5 marks)

where R_B =1M Ω , V_{BB} =30V, V_{CC} =30V, R_E =10K Ω , R_C =5K Ω and β =100. Calculate I_e , I_c , I_b , V_C , V_E and V_{CE} .

Question FOUR (20 marks)

- a) Distinguish between Fresnel diffraction and Fraunhoffer diffraction. (2 marks).
- b) Light of wavelength 580 nm is incident on a slit of width 0.300 mm. The viewing screen is 2.00 m from the slit. Find the positions of the first dark fringes and the width of the central bright fringe. (4 marks)
- c) Sketch the intensity of variation of the diffraction pattern as a function of distance across the screen. (3 marks)
- d) A layer of ice, having parallel sides, floats on water. If the light is incident on the upper of the ice at an angle of 30.0°, what is the angle of refraction in the water? (3 marks)
- e) A concave spherical mirror has a radius of curvature of 20.0 cm. Find the position the nature of image formed if an object is placed 40.0 cm in front of the mirror. (4 marks)
- f) Monochromatic light from helium-neon laser ($\lambda = 632.8 \, nm$) is incident normally on a diffraction grating containing 6000 lines per centimeter. Find the angles at which the first and second order maximum are observed. (4 marks)

Question FIVE (20 marks)

- a) Define the following terms: marks)
- (i) Radioactivity.
- (ii) Nuclear Fission.
- (iii) Nuclear Fusion.
- e) Consider the nuclear equation:

$$^{27}_{13}Al + ^{4}_{2}He \rightarrow ^{A}_{Z}X + ^{1}_{0}n + E$$

(i) Find the values of A and Z

(2 marks)

(3

- (ii) Calculate the value of energy E (3 marks) (Mass numbers of Al, He, X and n are 26.98153 a.m.u, 4.002602 a.m.u, 29.97831 a.m.u and 1.0008665 a.m.u respectively).
- f) An electron shifts from the N to L shell in ahydrogen atom resulting into emission of light. What is the wavelength of this light? (2 marks)
- g) Electrons are accelerated from rest onto a target in an x ray tube by ap.d of 100KV. Find:

i)The velocity of the electrons on reacting the target.

- ii) The energy converged to the target per second if the electron beam current is 15
- iii) The energy of the X-rays produced if only 1% of incident energy is converted to X-rays. (5 marks)
 - h) (i) State three properties of x-rays.

(3 marks)

(ii) State any two uses of x-rays

(2 marks)