

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

SCH 430

COURSE TITLE: ORGANIC SPECTROSCOPY

DURATION: 2 HOURS

DATE: 03/10/2018

TIME: 3:00-5:00PM

INSTRUCTIONS TO CANDIDATES

- Answer QUESTION ONE (Compulsory) and any other two (2) Questions.
- Indicate answered questions on the front cover.
- Start every question on a new page and make sure question's number is written on each page.

This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

Question 1

Question 1	[4mks]
a) Briefly explain the difference between the following;	[4IIIK5]
the second of th	
ii. Nuclear Magnetic Resonance (NMR) and Mass spectrum. Calculate the follow. Caffeine molecules absorb infrared radiation at 1656 cm ⁻¹ . Calculate the follow.	lowing:
1 1 - f Alexa mod10f10N'	
Culti- andiotion:	[2mks]
t and a sisted with this absorblion.	[2mks]
iii. Energy change associated with this description	[1mk]
c) State Beer- Lamberts law.d) How does the percent transmittance of a solution vary with;	[2mks]
d) How does the percent transmittance of a series concentration?	
i. increasing concentration?	0.1
 ii. increasing path length? e) A solution of thickness 2 cm transmits 40% incident light. Calculate the content of thickness 2 cm transmits 40% incident light. 	ncentration of the
e) A solution of thickness 2 cm transmits 107 and 107	[3mks]
solution, given that $\varepsilon = 6000 \text{ dm}^3/\text{mol/cm}$. f) Predict whether UV-VIS spectroscopy can be used to distinguish between the more than one) for each.	he following
f) Predict whether UV-VIS spectroscopy can be used to determine the property of the second se	
isomers. Estimate λmax (there may be more than one) for each.	[3mks]
i) CH ₂ =CH-CH ₂ -CH=CH-CH ₃ and CH ₃ -CH=CH-CH=CH-CH ₃	[3mks]
ii) CH ₃ -CO-O-CH ₂ -CH ₃ and CH ₃ -CH ₂ -CO-O-CH ₃ g) How will you distinguish between $\pi \to \pi^*$ and $n \to \pi^*$ transitions? Apply	the effect of
g) How will you distinguish between $\pi \to \pi^*$ and $\pi \to \pi^*$ and $\pi \to \pi^*$	[4mks]
· '11atmote this	[4mks]
h) Lycopene is responsible for the red colour of tomatoes. Explain.	•
Question 2	copy. [2mks]
Digtinguish between absorption Spectroscopy and officers	[2mks]
- t t t t t t t t t t t t t t t t t t t	[4mks]
c) How will you estimate ring strain using it and over little of the infrare d) What would be the effect of an increase in temperature on the infrare	a spectrum
hydrogen-bonded compound?	
	[4mks]
- 1: 11 -tweeture of the compound (collinercial sample)	Ionowing spectrum
characteristics and justify your answer.	[UIIIKS]
MF: C ₄ H ₁₀ O;	
1 2000 1450 1200 1050cm	
IR: 3450 (broad), 2980, 1430, 1200, 1650011 1HNMR: 1.5 (3H, t), 2.8 (2H, dq), 3.4 (1H, m), 4.5 (1H, s), 2.1 (3H,	d).
¹³ C NMR: 22.6, 68.7, 32.0, 9.9 ppm. DEPT 45: 4 signals, DEPT 90: 1 signal, DEPT 135: 3 +ve and 1 -v	re signals.
DEPT 45: 4 signals, DEFT 90. I signal, 222	

Question 3

a) Using examples, explain the following terms;

i.	Chromophore	[2mks]
ii.	Auxochrome	[2mks]
iii.	Bathochromic shift	[2mks]
iv.	Hypsochromic shift	[2mks]

b) Using Woodward-Fieser's rule, calculate wavelengths of maximum UV absorption for following compounds: 9mks

c) State three applications of UV spectroscopy.

[3mks]

Question 4

a) State four factors affecting chemical shifts in proton nmr spectra. [4mks]

b) Proton n.m.r. spectra are usually recorded using a solution of a substance to which tetramethylsilane (TMS) has been added. Give FOUR reasons why TMS is a suitable standard. [4mks]

c) Sketch the proton nmr spectrum showing the splitting patterns of each of the following;

Question 5

a) Outline four processes involved in basic principles of Mass spectrometry. [4mks]

b) Use the following spectra to analyse and deduce the structure of A: [16mks]

Mass spectrum:

100 - 100 -

Infra-red spectrum: sharp absorption at 1715 cm⁻¹, no broad absorptions between 1500 and 3500 cm⁻¹

Woodward-Fieser Rules for Dienes

Parent Homoannular Heteroannular $\lambda=253 \text{ nm}$ $\lambda=214 \text{ nm}$ =217 (acyclic)

Increments for:

Double bond extending

conjugation +30
Alkyl substituent or ring residue +5
Exocyclic double bond +5

Polar groupings:

-OC(O)CH3 +0 -OR +6 -CI, -Br +5 -NR2 +60 -SR +30

Woodward-Fieser Rule for Enones

Enone & Dienone	Base values (λ _{max})
Acyclic α,β-unsaturated ketones	215 nm
6-membered cyclic α,β -unsaturated ketones	215 nm
5-membered cyclic α,β-unsaturated ketones	202 nm
α,β-unsaturated aldehydes	210 nm
α,β-unsaturated carboxylic acid & esters	195 nm

Increments for:

Double bond extending conjugation (DEC): +30

Exocyclic double bond: + 5

Homodiene component: +39

Woodward-Fieser Rule for Enones

Alkyl group/ring res	sidue: a	+10
	β	+12
	γ & higher	+18
Polar groups: -OH:	a	+35
	β	+30
	δ	+50
-OAc:	α,β,γ	+ 6
-OMe:	α	+35
	β	+30
	Y	+17
	δ	+31
-SAlk:	β	+85
-CI:	α	+15
	β	+12
-Br:	α	+25
	β	+30
-NR ₂ :	β	+95

Characteristic Infrared Absorption Frequencies

Bonding		Frequency (cm ⁻¹)	Intensity*	Type of Vibration (stretching unless noted)
С—Н	alkane	2850-3000	w-m	
	-CH,	1375 and 1450	w-m	out-of-plane bending
	-CH ₂ -	1450	m	out-of-plane bending
	alkene	3000-3100	w-m	
		650-1000	S	out-of-plane bending
	alkyne	3300	S	
	aromatic	3000-3100	S	
		690-900	S	out-of-plane bending
	aldehyde	2700-2800	W	
		2800-2900	w	
C-C	alkane	(not interpretative	ely useful)	
C=C	alkene	1600-1680	w-m	
	aromatic	1450 and 1600	w-m	
C = C	alkyne	2100-2250	w-m	
C-O	alcohol, ether, es- ter, carboxylic acid, anhydride	1050-1250	s	
C=0	amide	1630-1680	S	
	carboxylic acid	1700-1750	S	
	ketone	1705-1780	S	
	aldehyde	1705-1740	S	
	ester	1735-1800	S	
	anhydride	1760 and 1810	S	
	acid chloride	1800	S	
O-H	alcohol, phenol			
	free	3600-3650	m	
	hydrogen bonded	3200-3500	m	
	carboxylic acid	2400-3400	m	
N-H	amine and amide	3100-3500	m-s	
C=N	nitrile	2200-2250	m	

^{*} s = strong, m = medium, w = weak

Characteristic ¹H-NMR Chemical Shifts

Type of Hydrogen (R = alkyl, Ar = aryl)	Chemical Type of Hydrogen (R = alkyl, Ar = aryl)		Chemical Shift (δ)*	
(CH ₃) ₄ Si	0 (by definition)	o o		
RCH ₅	0.8-1.0	RCOCH ₃	3.7-3.9	
RCH₂R	1.2-1.4	Q.		
R ₃ CH	1.4-1.7	RCOCH₂R	4.1-4.7	
$R_2C = CRCHR_2$	1.6-2.6	RCH ₂ I	3.1-3.3	
RC=CH	2.0-3.0	RCH ₂ Br	3.4-3.6	
ArCH ₃	2.2-2.5	RCH ₂ Cl	3.6-3.8	
ArCH ₂ R	2.3-2.8	RCH₂F	4.4-4.5	
ROH	0.5-6.0	ArOH	4.5-4.7	
RCH ₂ OH	3.4-4.0	$R_2C = CH_2$	4.6-5.0	
RCH ₂ OR	3.3-4.0	R ₂ C=CHR	5.0-5.7	
R_2NH	0.5-5.0	Ar H	6.5-8.5	
RCCH,	2.1-2.3	RCH O	9.5-10.1	
RCCH _o R	2.2-2.6	RCOH	10-13	

^{*} Values are approximate. Other atoms within the molecule may cause the signal to appear outside these ranges.

Characteristic ¹³C-NMR Chemical Shifts

Type of Carbon	Chemical Shift (δ)	Type of Carbon	Chemical Shift (δ)	
RCH ₃	0-40	G-R	110-160	
RCH ₂ R	15-55		110-100	
R ₃ CH	20-60	Ŷ		
RCH ₂ I	0-40	ROR	160-180	
RCH ₂ Br	25-65	Q		
RCH ₂ Cl	35-80	RONR ₂	165-180	
R ₃ COH	40-80	P		
R,COR	40-80	RCOH	175-185	
RC-CR	65-85	o o		
R.C=CR2	100-150	RCH, RCR	180-210	