KIBABII UNIVERSITY # UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR ## FOURTH YEAR SECOND SEMESTER SUPPLEMENTARY EXAMINATIONS FOR THE DEGREE OF B.SC (SCIENCE) **COURSE CODE:** **SCH 410E** **COURSE TITLE:** COORDINATION AND ORGANO METALLIC CHEMISTRY **DURATION: 2 HOURS** DATE: 01/10/2018 TIME: 11:30-1:30PM #### INSTRUCTIONS TO CANDIDATES Answer **QUESTION ONE** (Compulsory) and any other two (2) Questions. - Indicate answered questions on the front cover. Start every question on a new page and make sure question's number is written on each page. This paper consists of 5 printed pages. Please Turn Over KIBU observes ZERO tolerance to examination cheating #### Question One (30 Marks) | a) | Define the following terms as used in coordination compounds | | | | |--|---|-----|--|--| | i. | Ligand | | | | | ii. | Ligand donor atom | | | | | iii. | Chelate | | | | | iv. | Spectrochemical series [0 | 4] | | | | b) Nan | ne the following complex cations, neutral complexes, and complex anions. [0 | 4] | | | | i. | $[Cr(H_2O)_5Cl]^2$ | | | | | ii. | [Fe(EDTA)] | | | | | iii. | $[Pt(en)_2(SCN)_2]^{2+}$ | | | | | iv. | $[Co(CO_3)_3]^{3-}$ | | | | | c) Nar | me the following coordination compounds. [0 | 4] | | | | i. | [Co(NH ₃) ₅ (ONO)]SO ₄ | | | | | ii. | $[Co(NH_3)_4Br_2]Br$ | | | | | iii. | [Ag(NH3)2][Ag(CN)2] | | | | | iv. | $K_3[Fe(C_2O_4)_3]$ | | | | | a) Pr | giving appropriate examples, differentiate between monodentate ligands and bidentate | | | | | ligands | | 2] | | | | inguita | j. | -1 | | | | f) State | e and explain three factors that affect the magnitude of Δ_0 during d-splitting in | | | | | comple | exes. [0 | 3] | | | | g) Give the ligand name for each of the following ligands. Identify the donor atom(s) in each. | | | | | | Ligan | d H ₂ O C ₂ O ₄ ²⁻ CN ⁻ NH ₃ NO ₂ - ONO- | | | | | | | | | | | Name | <u> </u> | 131 | | | | | Į v | 3] | | | | Question two (20 Marks) | | | | | | a) For | the complex $[Co(CN)_6]^{3-}$: | | | | | i) Is Δ_0 relatively large or small? [02] | | | | | | ii) How do the values of the splitting and the e- pairing energies compare? Circle one: Δ_0 (= , > or <) P [02] | | | | | | iii) Is the complex high spin or low spin? [02] | | | | | | | | | | | | iv) Draw a diagram to show the fields of the valence electrons from the metal in both the iso ion and the complex. | lated [04] | |---|----------------------------| | v) Draw the box notation of the valence level orbital notation for the complex, circle the electrons that come from the ligands. vi) What is the hybridization of the orbitals in the central Metal ion? vii) Based on the orbital notation in (v) is the complex paramagnetic or diamagnetic, explain | [04]
[03]
n.
[03] | | Question three (20 Marks) a) Using Valence- bond theory, show that the complex ion [Fe(CN)₆]³⁻ is octahedral a paramagnetic. b) Calculate the paramagnetic dipole moment for the complex, given μ_B= √n(n+2). c) What are the limitations of valence-bond theory? d) Explain the meaning of the following magnetic behavior in inorganic compounds (where possible use illustrations) | [04]
[04] | | i. Ferromagnetismii. Anti ferromagnetism | [04] | | Question four (20 Marks) Discuss the applications of chelating compounds in industry and medicine. | [20] |