

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR

SPECIAL/SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: SCH 340

COURSE TITLE: STATISTICAL THERMODYNAMICS

DATE: 22ND SEPTEMBER 2017

TIME: 3 - 5PM

INSTRUCTIONS TO CANDIDATES

Answer QUESTION 1 and any other TWO questions

TIME: 2 Hours

KIBABII UNIVERSITY observes ZERO tolerance to examination cheating

QUESTION ONE (30 MARKS)

a) Define the following terms:

[6 marks]

- i. Thermodynamics
- ii. Stirling's approximation
- iii. Entropy
- b) What is mean by the phrase "a priori probability" as applied to statistical thermodynamics?[2 marks]
- c) Differentiate between microstates and microstates as used in statistical thermodynamics [2 marks]
- d) Calculate the number of ways of distributing 30 identical objects with the arrangement 6, 0, 2, 8, 10, 4, the configuration is {6, 0, 2, 8, 10, 4} with N = 30 [6 marks]
- e) Describe the physical significance of the partition function. [3 marks]
- f) Write an expression for the partition function of a linear molecule (such as HCl)treated as a rigid rotor and explain each of the terms.[5 marks]
- g) Explain the three types of ensembles as used in statistical thermodynamics [6 marks]

QUESTION TWO (20 MARKS)

- a) Explain what is meant by an ensemble and why it is useful in statistical thermodynamics. [4marks]
- b) Discuss the two ways by which the parameter β may be identified with 1/kT. [6 marks]
- c) By use of relevant equations, explain the connection between the Boltzmann distribution and partition function theory for independent molecules [10 marks]

QUESTION THREE (20 MARKS)

- a) Explain what is meant by an ensemble and why it is useful in statistical thermodynamics.
 [4 marks]
- b) Calculate the ratio of the translational partition functions of xenon and helium at the same temperature and volume. [5 marks]
- c) What is the temperature of a two-level system of energy separation equivalent to 300 cm⁻¹ when the population of the upper state is one-half that of the lower state? [5 marks]
- d) Show that W = N!/(n!!n2!...) = 1/2N(N-1) [6 marks]

QUESTION FOUR (20 MARKS)

- a) Using the differential form of the equations of U, H, A and G derive all the four Maxwell relations. [10 marks]
- b) Starting with the Boltzmann formula $S=k\ln W$, derive an expression that relates the statistical entropy to the internal energy of a system [10 marks]

QUESTION FIVE (20 MARKS)

a) Explain how the internal energy and entropy of a system composed of two levels vary with temperature. Use equations to illustrate your explanations. [10 marks]

D)	State the expression for the Boltzmann distribution function and explain meaning		
	term each of the terms		[10 marks]
		END	