

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF B.ED (SCIENCE)

COURSE CODE:

SCH 312

COURSE TITLE:

RADIATION AND NUCLEAR CHEMISTRY

DURATION: 2 HOURS

DATE: 19TH SEPTEMBER2017

TIME: 2:30PM - 5:30PM

INSTRUCTIONS TO CANDIDATES

- Answer QUESTION ONE (Compulsory) and any other two (2) Questions.
- Indicate answered questions on the front cover.
- Start every question on a new page and make sure question's number is written on each page.

This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE 30 MARKS

- 1. a) Explain some of the following nuclear terminologies (4 marks).
- i. Isotope
- ii. Isober
- iii. A nuclide X can be written as 17³⁵X, define and identify the Atomic mass and Mass number of X (4 Marks)

b) Define the following terms and give examples in each case (4 marks)

- i) Radiation
- ii) Ionizing radiations
- iii) Non-ionizing radiations

Explain the inter-relationship between nuclear binding energy and nuclear stability (4 marks).

- c) Compute the number of alpha decays under gone by 1g of thorium 232 in one year. If the decay constant $\lambda = 1.58 \times 10^{-18}$ per second. (4 marks).
- d) Unstable nuclear can undergo the following radioactivity to become more stable, briefly explain when the following occurs (5 marks).
- i. Electron capture
- ii. Neutron emission
- iii. Alpha emission
- iv. Gamma radiations
 - g) Complete the following nuclear equations and indicate the type of radioactivity involved (5mark).

a.
$$\frac{1}{90}$$
 $\frac{234}{19}$ Th $\frac{1}{2}$ He b. $\frac{19^{131}}{19^{13}}$ $\frac{1}{19^{13}}$ $\frac{1}{19$

e. $2({}_{2}{}^{3}\text{He}) \longrightarrow -+ 2({}_{1}{}^{1}\text{H})$

QUESTION TWO 20 MARKS

b) a) Calculate the binding energy in Mev per atom, and the binding energy per nucleon of the following nuclides using the data in the table (9 Mark)

Elementary particle	Mass (u)	Mass Kg		
Proton	1.0072764669	1.6726216 × 10 ⁻²⁷		
Neutrons	1.0086649158	1.6749272 × 10 ⁻²⁷		

Atoms

Mass (u)

i) ¹⁰₄Be

10.0135337

ii) 35₁₇Cl

34.96885271

iii) 49₂₂Ti

48.947871

- c) Define radioactivity and differentiate between nuclear fusion and nuclear fission. (3marks)
- d) Discuss some of the practical application of nuclear chemistry in (8 marks)
- i. Environment
- ii. Industry
- iii. Medicine
- iv. Agriculture
 - e) State three general properties of stabile nuclide. (3 marks)

QUESTION THREE 20 MARKS

- What is meant by (3 marks)
- i. Binding energy
- ii. Binding energy per nucleon
- iii. Separation energy of an atomic nucleus.
 - b) Atomic mass of 1³H and 2³H and 3.01605 amu and 3.016030 amu respectively calculate their BE and explain what is responsible for difference in the two BE. (3 Marks)
 - c) Show that the following fusion reaction is possible

$$^{2}_{1}H + ^{2}_{1}H^{4}_{2}He$$

The energy released per fusion event is 24 Mev where the binding energy per nucleon value of ${}^{2}_{1}$ H and ${}^{4}_{2}$ He are 0.55 Mev/ nucleon and 7.1 Mev/ Nucleon respectively.

- d). Derive the decay law.(3 marks)
- e). A sample of 2 g $_{83}^{209}$ Bi with a half-life 2.7×10^7 years decays into stable isotope of thallium by emitting alpha particle. What would be the activity of the sample after 2 years?. (3 marks)
- i) Tritium (3 H) decays by beta emission to 3 He with half- life of 12.26 years . A sample of atritiated compound has an initial activity of 0.833 Bq calculate the number N of tritium nuclei in the sample initially, the decay constant λ and the activity after 2.50 years.(5 marks)

QUESTION FOUR 20 MARKS

- 4) a) Compute the number of alpha decays under gone by 1 g of thorium 232 in 1 year . if the decay constant $\lambda = 1.58 \times 10^{-18}$ per second (3 marks)
- b) 0.01 mg of Pu 234 units has a decay constant of 1.4×10⁷ particle/minute what is its half-life?. (3 marks)
- c) How much time will be taken by Pu to decay to 1 % of its initial activity (4 Marks)
- d) Unstable nuclide can undergo the following radioactivity to gain stability
- i) fussion
- ii) fission

define the terms fusion and fission and in each case give an example (4 Marks)

e).

An irradiated sample of gold gave the following results

Time/min	0	1	8	10	25	50	75	100
Counter/min	300	296	285	270	228	175	133	103

- i). Draw the graph of counter per minute against time in minutes (4 marks)
- ii). Determine the half life of the isotope of gold (2 Marks)