

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF B.ED (SCIENCE)

COURSE CODE:

SCH 310

COURSE TITLE: COMPARATIVE STUDY OF S AND P BLOCK ELEMENTS

DURATION: 2 HOURS

DATE: 18TH SEPTEMBER 2017 TIME: 2:30 - 5:30PM

INSTRUCTIONS TO CANDIDATES

- Answer QUESTION ONE (Compulsory) and any other two (2) Questions.
- Indicate answered questions on the front cover.
- Start every question on a new page and make sure question's number is written on each page.

This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

SECTION A

QUESTION 1

1 (a) (i) Explain why the conductivity of the Li+ ion is abnormally low (2)
(ii) Explain why aluminium chloride is covalent whereas aluminium fluoride is ionic(2)
(b) Sulphur cartenates more than group vi elements.
(i) Define the term Cartenation(1/2)
(ii) Give an example of a species in which sulphur cartenates(1/2)
(c)Beryllium chloride is substantially covalent but the chlorides of group 2A become more ionic on going down the group, so that Barium sulphate is almost purely ionic. Explain this observation
(d) Explain using equations why an aqueous solution of aluminium chloride is acidic (2)
(e) (i) State the storage equipment for alkali metals(1)
(ii) Write balanced chemical equations for the following reactions
[I] Potassium heated in chlorine gas(1 ½)
[II] Sodium heated in a stream of ammonia gas(1 ½)
(f) The following table shows the physical data for the halogen hydrides.

Boiling point(°C)	Ka	Bond dissociation energy KJ/Mol	
19.5	10-4	562	
-85.0	107	431	
-67.0	109	366	
-35.0	10 ¹¹	298	
THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, WHEN	19.5 -85.0 -67.0	19.5 10 ⁻⁴ -85.0 10 ⁷ -67.0 10 ⁹	

(i)	Account for the boiling point of the hydrogen halides(1)
(ii)	Arrange the hydrogen halides in order of increasing acidity and account for the order(2)
(iii)	Explain why a solution of hydrogen chloride in methylbenzene does not conduct electricity, while in aqueous solution it behaves as a strong electrolyte(1)
(g) Write and	e a balanced chemical equation for the reaction between concentrated sulphuric acid
(i)	Hydrogen Sulphide(1 1/2)
(ii)	Sulphur(1 ½)
(iii	(1.1/)

- (h) Three of the Oxoacids of Phosphorus have the formula H₃PO₃, H₃PO₄ and H₃PO₂
 - (i) Name the three acids......(1 $\frac{1}{2}$)
 - (ii) Draw their full structural formulae.....(3)
 - (iii) Draw a diagram to show the expected shape and bond angles in a molecule of phosphorus trichloride......(2)
 - (iv) Phosphorus also forms a pentachloride, PCl₅, which is thought to exist in the solid form as [PCl₄]⁺, PCl₆]⁻; suggest the shapes of these ions. (2)

SECTION B

Question 2

(a) The behaviour of the hydrides of the elements Na – Ar with water is summarized below

NaH	MgH ₂	AlH ₃	SiH ₄	PH ₃	H ₂ S	HCl
Re	act formin		No reaction	Reacts forming a slight alkaline solution	Reacts to form a slightly acidic solution	Reacts to form an acidic solution

- (i) Write equations to summarize the reactions of NaH and MgH₂ with water.....(2)
- (ii) Suggest a reason why SiH₄ has no reaction with water.....(1)
- (iii) Write an equation to account for the formation of a slightly alkaline solution when PH₃ reacts with H₂O.....(2)
- (b)(i) Beryllium shows certain properties that are not typical of the rest of the group. Mention two of these properties and suggest reasons why the difference should occur......(4)
- (ii) Group II elements frequently form hydrated salts while the corresponding compounds of group 1 elements are anhydrous. Suggest reasons for this difference.....(3)
- (c)Magnesium and Calcium occur naturally in the mineral dolomite, MgCO₃.CaCO₃, a mixture of insoluble Magnesium and Calcium Carbonates which can be used to produce Calcium Sulphate and Magnesium Sulphate. Calcium Sulphate is used in the manufacture of building materials such as plaster board. Magnesium Sulphate is used in fire proofing fabrics and an Epsom salts.

(i) Describe carefully how you would prepare samples of MgSO₄.7H₂O and CaSO₄ from dolomite. You may find the following information useful.....(4)

Compound	Solubility per 100g of water at 20°C		
MgSO ₄	0.01		
CaCO ₃	0.0014		
MgSO ₄	33.0		
CaSO ₄	0.21		

(b) How would you obtain pure MgSO₄ from crystals of MgSO₄.7H₂O.....(2)

QUESTION 3

(a) The density of anhydrous aluminium chloride vapour was measured at 200°C, 600°C and 800°C at atmospheric pressure and the results are given below.

Temperature/°C	200	600	800
Density g/cm ³	6.9	2.7	1.5

- (i) Calculate the relative molecular mass of anhydrous aluminium chloride vapour at each temperature. R = 8.31J/K.....(2)

(b) The first step in the manufacture of nitric acid from ammonia involves the exothermic oxidation of ammonia to nitrogen oxide (NO) and steam.

- - (c) Explain the following observations:

 - (ii) Halogens become waker oxidising agents as we move down the group.... (1)
 - (iii) HF has a higher boiling point than HCl and HI......(2)

QUESTION 4

(a) (i) Define the term bond angle(1)
(ii) Explain why Berylium chloride is a linear molecule whereas tin chloride is a trigonal planar (3)
(b) Compare the stability of oxo salts of group 1 and group 2 elements with reference to
(i)Nitrates(2)
(ii) Carbonates(2)
(c) With reference to reactions with alkalis and acids, show the difference in nature of aluminium hydroxide with that of magnesium hydroxide
(d) CO2 and SiO2 are both acidic but SiO2 is solid of high melting point whereas Co2 is a gas at room temperature. Explain
(e)(i) Explain the term silicones(2)
(ii) List four applications of silicones (4)