

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF B.ED (SCIENCE)

COURSE CODE:

SCH 310

COURSE TITLE:COMPARATIVE STUDY OF S AND P BLOCK ELEMENTS

DURATION: 2 HOURS

DATE: 18TH JANUARY 2018 TIME: 2 - 5PM

INSTRUCTIONS TO CANDIDATES

- Answer QUESTION ONE (Compulsory) and any other two (2) Questions.
- Indicate answered questions on the front cover.
- Start every question on a new page and make sure question's number is written on each page.

This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

SECTION A (30 MARKS)

QUESTION 1 (CUMPULSORY QUESTION)

- 1.(a) Outline differences between S and P block elements in the periodic table.(3mks)
- (b) Explain the trend of the atomic radius, first i.e electron affinity and electronegativity across the periodic table. (4mks)
 - (c) Explain each of the following observations;
 - i. Beryllium and Aluminium exhibit similar characteristics yet they belong to different groups of the periodic table.(1mk)
 - ii. Florine exhibitsonly -1 oxidation state whereas other halogens exhibit +1, +3, +5, +7 oxidation state also. (1mk)
- iii. Group 2 elements show greater ionization energy than group 1 elements. (1mk)
 - (d) Water (H_2O) and hydrogen sulphide (H_2S) are compounds of group six elements. (O and S). Explain why water is a liquid at room temperature whereas H_2S is a gas. (2mks)
 - (e) Oxides of nitrogen from high flying aircraft can lead to depletion of ozone layer. By use of chemical equations, show how this is possible. (3mks)
 - (f) An unknown element is a metalloid and has a valence configuration of ns²np³.
 - i. How many valence electrons does this element have? (1mk)
 - ii. What group member in the period table does the element belong to? (1mk)
 - iii. What are some possible identities of this element? (3mks)
 - iv. By help of a chemical equation, give the formula of compound this element will form on reaction with chlorine. (2mks)
 - (g) Predict the products of each of the following reaction and then balance each equation. (3mks)
 - i. $SiO_2 + HF$ ii. $XeF_6 + H_2O$
 - iii. $Na_2S_2O_3 + I_{2(S)} \longrightarrow$
 - (h) Write the Lewis structure for $[BeF_2]^{2-}$ and predict the geometric shape of the complex. (2mks)

QUESTION 2 (20 MARKS)

- a) Describe in details the extraction process of Aluminium from its principal ore outlining the role of each chemical used. (6 mks)
- b) State 3 reasons why it is not possible to obtain F₂ by electrolysis of aqueous HF or anhydrous HF (3mks)
- c) Describe how you would prepare a Gringard reagent from Mg and two different uses of the reagent in preparative reactions. (3mks)
- d) (i) The Pauling's electronegativity values for oxygen and silicon are 3.5 and 1.8 respectively. Comment on the bond type between O and Si. (1mk)
 - (ii) State any two major applications of phosphates. (1mk)
- e) The first step in the manufacture of nitric acid from ammonia involves the exothermic oxidation of ammonia to nitrogen oxide (NO) and steam.
 - i. Write the equation for the reaction of ammonia with oxygen to form nitrogen oxide steam. $(1^{1/2})$
 - ii. Predict qualitatively the conditions of temperature and pressure for maximum yield of nitrogen oxide. (1^{1/2})
 - iii. Describe with equations how nitrogen oxide produced by this process is converted to nitric acid. (3mks)

QUESTION 3 (20MARKS)

- (a)i. Define the term bond angle.(1mk)
- ii. Explain why Beryllium chloride is a linear molecule whereas Tin chloride is a trigonalplanar. (3mks)
- (b). Compare the stability of oxosalts of group 1 and group 2 elements with reference to;
 - i. Nitrates (1mk)
 - ii. Carbonates (2mks)
- (c) With reference to reactions with alkalis and acids, show the difference in nature of Aluminium hydroxide with that of Magnesium hydroxide.(4mks)
- (d) CO_2 and SiO_2 are both acidic but SiO_2 is a solid of high melting point whereas CO_2 is a gas at room temperature. Explain. (2mks)
- (e) i. Explain the term Silicones.(2mks)
 - ii. List four applicants of Silicones. (4mks)

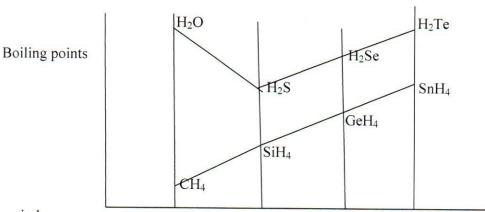
QUESTION 4 (20 MARKS)

- (a) Sulphur cartenates more than group (VI) elements.
- i.Define the term cartenation.(1/2mk)
- ii. Give example of species in which Sulphur cartenates.(1/2mk)
 - (b) Beryllium chloride is a substantially covalent but the compounds of group 2A become more ionic on going down the group, such that Barium sulphate is almost purely ionic. Explain this observation.(2mks)
 - (c) The following table shows the physical data for the halogen hydrides.

Halogen hydrides	Boiling point (°c)	ka	Bond dissociation energy KJ/mol
Hydrogen fluoride	19.5	154	562
Hydrogen chloride	-85.0	157	431
Hydrogen bromide	-67.0	157	366
Hydrogen iodide	-35.0	10"	298

- i. Account for the boiling point of the hydrogen halides.(2mks)
- ii. Arrange the hydrogen halides in order of increasing acidity and account for the order.(2mks)
- iii. Explain why a solution of hydrogen chloride in methyl benzene does not conduct electricity, while in aqueous solution it behaves as a strong electrolyte.(1mk)
- (d) Explain why Aluminium chloride is a covalent whereas Aluminium fluoride is ionic.(2mks)
- (e) The behaviour of the hydrides of the elements Na-Ar with water is summarised below;

NaH MgH ₂ AlH ₃	SiH ₄	PH ₃	H ₂ S	HCI
React forming H ₂ gas and an alkaloid solution	No reaction	Reacts forming a slight alkaline solution	Reacts to form a slightly acidic solution	


- i. Write equations to summarise the reactions of NaH and MgH₂ with water.(2mks)
- ii. Suggest a reason why SiH₄ has no reaction with water.
- iii. Write an equation to account for the formation of a slightly alkaline solution when PH₃ reacts with water.(2mks)
- iv. Write an equation to account for the formation of an acidic solution when HCl reacts with water.(2mks)
- (f) Beryllium shows certain properties that are not typical of the rest of the group. Mention two of these properties and suggest reasons why the difference should occur.(3mks)

QUESTION 5 (20 MARKS)

(a) The table below shows the effect of adding water to the chloride of elements in the third period.

Chloride	NaCl	MgCl ₂	AlCl ₃	SiCl ₄	PCl ₅
Adding water	Dissolves	Dissolves	Vigorous reaction	Vigorous reaction	Vigorous reaction

- i. Discuss the trend in the pH of the resultant solution.(5mks)
- ii. Write the equation for the reaction between Silicon tetrachloride and water. (2mks)
- (b) The following is a plot of the boiling points of hydrides of group (VI)A (16) elements.

period

Explain the following facts;

- i. The boiling points of group (VI) (16) hydrides are higher than those of group (IV) A (14) hydrogen.(1mk)
- ii. The boiling point of water is much higher than the boiling point of other group (vi) A(16) hydrides. (2mks)
- iii. The bond angle of ammonia (107°) is larger than the bond of angle Phosphine (93°)
- (c) i. H₂S₂O₄ and H₃PO₃ are dibasic acids sketch the molecular structures of the acids.(2mks)
- ii. State and explain the difference in the acids in (i) above which is a consequence of structure difference. (2mks)
- iii. Chloride, NCl_3 , PCl_3 and PCl_5 exist but NCl_5 does not. Account for this observation. (2mks)