

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF B.ED (SCIENCE)

COURSE CODE: SCH 241

COURSE TITLE:Chemical Kinetics

DURATION: 2 HOURS

DATE: 25TH SEPTEMBER 2017 TIME: 11:30AM - 1:30PM

INSTRUCTIONS TO CANDIDATES

- Answer **QUESTION ONE** (Compulsory) and any other two (2) Questions.
- Indicate answered questions on the front cover.
- Start every question on a new page and make sure question's number is written on each page.

This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

Question one

- (a) Define the following examples using appropriate examples and illustrations..... (6)
 - (i) Molecularity of a reaction
 - (ii) Order of a reaction
 - (iii) Activated complex
- (b) Consider the stoichiometric reaction; $H_{2(g)} + Cl_{2(g)} \longrightarrow 2HCl_{(g)}$
 - (i) Determine the rate of consumption of Cl₂ given that the rate of formation of HCl is 2.5x10⁻³mol/l/sec (3)
 - (ii) If the rate of consumption of $H_{2(g)}$ is doubled, determine the rate of consumption of $Cl_{2(g)}$ and the formation of $HCl_{(g)}$ (2)
- (c) The following data were measured for the reaction of nitric oxide with hydrogen:

$$2NO_{(g)} + 2H_{2(g)}$$
 $-N_{2(g)} + 2H_2O_{(g)}$

Experiment	[NO](M)	[H ₂](M)	Initial rate(M/sec)
1	0.10	0.10	1.23x10 ⁻³
2	0.10	0.20	2.46x10 ⁻³
3	0.20	0.10	4.92x10 ⁻³

- (i) Determine the rate law for this reaction...... (4)
- (ii) Calculate the rate constant(1)
- (iii) Calculate the rate law when [NO] =0.050M and $[H_2]$ = 0.150M (2)
- (d) Carbon 14 (¹⁴C) is a radioactive isotope with a half life of 5.73 x 10³yrs. The amount of ¹⁴C present in an object can be used to determine its age. Calculate the rate constant for decay of ¹⁴C and determine how long is required for 90% of the ¹⁴C in a sample to decompose.(8)
- (e) The half life of a radioactive ¹⁴C is 5730yrs. An archaeological sample contains 72% of the ¹⁴C normally found in nature. Calculate the age of the archaeological sample.....(5)

Question 2

- (a) Derive the integrated rate law for a first order reaction A → P with initial concentration[A]₀ and concentration at time, t, is [A]t......(4)
- (b) The decomposition of A is first order, and A is monitored. The following data was recorded

t/min	0	1	2	4
[A]/(M)	* 0.100	0.0905	0.0819	0.0670

- (i) Calculate the rate constant, k. (2)
- (ii) What is the half life?....(2)
- (iii) Calculate [A] when t = 5 min(2)
- (iv) Calculate t when [A] = 0.0100....(2)
- (v) Estimate the time required for 90% of A to decompose.(2)

- (c) Outline any three applications of half life.(3)
- (d) The reactions of NO_2 have been studied as a function of temperature. For the following decomposition reaction, the rate constant is $2.7 \times 10^{-2} \text{ m}^{-1}\text{s}^{-1}$ at 227°C and $2.4 \times 10^{-1}\text{m}^{-1}\text{s}^{-1}$ at 277°C .

$$2NO_2 \longrightarrow 2NO + O_2$$

Studies of the conversion of NO_2 to N_2O_4 give $k = 5.2 \times 10^9 \text{m-1s-1}$ at both 298 and 350K

$$2NO_2 \longrightarrow N_2O_4$$

Calculate the activation energies of these two reactions......(3)

Question three

(a) Suppose the following sequence of reactions were proposed for a certain reaction

Step 1 2A
$$\underline{k1}$$
 A2
Step 2 A2 +B $\underline{k2}$ C + 2D

- (i) Identify any intermediate species in the above mechanism. Explain your answer.(2)
- (ii) What would be the rate law if step 1 was slow and step 2 was fast?(1)
- (iii) What would be the rate law if step 2 was slow and step 1 was fast?(2)
- (iv) Determine the rate law expression if step 2 is slow with the first reaction being a rapidly established dynamic equilibrium.(3)
- (v) Explain why the slowest step is considered to be the rate determining step?(2)
- (b) For the reaction: $H_{2(g)} + I_{2(g)} \longrightarrow 2HI_{(g)}$, what mechanism might be appropriate? Derive a rate law from the proposed mechanism.(4)
- (c) The decomposition of hydrogen iodide has the rate constant of 9.51 x 10⁻⁹mol/l/sec at 500K and 1.10x 10⁻⁵mol/l/sec at 600K. Find the activation energy for this reaction.(4)
- (d) Explain the following terms
 - (a) Homogenous catalysis.....(1)
 - (b) Heterogeneous catalysis(1)

Question four

- (a) Two main theoretical approaches applied to the theory of reaction rates are the collision theory and transition state theory
 - (i) Briefly discuss what the collision theory is based on(4)
 - (ii) Outline the limitations of the collision theory(3)
- (b) Using appropriate examplesto differentiate between homogeneous and heterogeneous catalysis.(2)
- (c) Outline any three characteristics of a catalyst.(3)
- (d) The rate of the reaction

$$H_2O_{2(aq)} + 2I^{-}_{(aq)} + H^{+}_{(aq)} I_{\overline{2(aq)}} + 2I_2 O_{(l)}$$

May be calculated by measuring the time for the first appearance of I^2 in the solution.i.e the time required for the concentration of I_2 to reach 10^{-5} moles/dm³.

(a) For a particular experiment in which initially

 $[H_2O_2] = 0.010M$

 $[I^{-}] = 0.010M$

 $[H^{+}] = 0.10M$

Calculate the reaction rate if I_2 first appear after 6 seconds......(2)

(b) In a second experiment in which initially,

 $[H_2O_2] = 0.005M$

 $[I^{-}] = 0.010M$

 $[H^{+}] = 0.10M$

Calculate the reaction rate if I₂ first appear after 12 seconds.....(2)

- (c) From these calculations, show that the reaction is first order with respect to $H_2O_2.....(2)$
- (d) Given further information that the rate law is Reaction rate = $k[H_2O_2][H^+][I^-]$, calculate the rate constant k......(2)