

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF B.ED (SCIENCE)

COURSE CODE:

SCH 240

COURSE TITLE:

BASIC CHEMICAL THERMODYNAMICS

DURATION: 2 HOURS

DATE: 17/10/2018

TIME: 11:30-1:30PM

INSTRUCTIONS TO CANDIDATES

- Answer **QUESTION ONE** (Compulsory) and any other two (2) Questions.
- Indicate answered questions on the front cover.
- Start every question on a new page and make sure question's number is written on each page.

This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

Question 1

a. State any FOUR assumptions of kinetic theory of gases.

[4mks]

b) State THREE differences between real gases and perfect gases?

[3mks]

- c) Oxygen occupies 20 dm³ and exerts pressure of 1.68 x 10⁵ NM⁻² at -43°c. Determine the mass of oxygen present, assuming ideal gas behavior. (O=16, R=8.314 NMK⁻¹mol⁻¹). [4mks]
- d) A fixed mass of gas has a volume of 76cm³ at 27°C and 100kPa pressure. Determine the volume that the gas would occupy at stp. (Take stp values as 0°C and 101.3 kPa) [4mks]

$$[P + \frac{an^2}{V^2}](V - nb) = nRT$$

- e) The van der waals equation for real gases is
 - i. What is the significance for *nb* and an^2/v^2 in the equation?

[4mks]

- ii. Ammonia, NH₃, obeys the van der Waals equation of state, with parameters a = 4.25 atm dm⁶ mol⁻¹ and b = 0.0379 dm³ mol⁻¹. Calculate the pressure exerted by 0.500 mol of NH₃ at a temperature of 298 K in a cylinder of volume 500 cm³. [3mks]
- iii. Calculate the compressibility factor z for NH₃ under the conditions in g (ii) above. [2mks]
- f) The graph below shows how changes in volume were affected by changes in pressure for CO₂. Use it to answer questions that follow.

- Fig. 12. p. V isothermals for carbon dioxide.
- i. Which graph corresponds to ideal gas behavior for CO₂?

[1mk]

ii. Explain the behavior of CO₂ between points; A-B and B-C

[2mks]

iii. Identify the critical Temperature and pressure for CO₂ from the graph.

[2mks]

g) State the Law of corresponding states.

[1mk]

Question 2

(a) Write mathematical interpretation of the First law of thermodynamics

[1mk]

(b) What is meant by the following terms as used in thermodynamics.

[4mks]

- I. Isothermal process
- II. Isochoric process
- III. Isobaric process
- IV. Adiabatic process.
 - c) Oxygen enclosed in a cylinder with a movable piston (assume the gas is ideal) is taken from an initial state A to another state B then to state C and back to state A.

(i) Name the processes at A-B and B-C

[2mks]

(ii) How many moles of oxygen are in the cylinder?

[3mks]

(iii) For the path A to B, Find the values of amount of work done, W and amount of heat transferred, Q;

[4mks]

d) Starting from the T-V relation: $C = TV^{\gamma-1}$, derive the P-V relationship for the adiabatic process and show that the adiabatic curve is γ times steeper than the isothermal curve on a P-V diagram. [6mks]

Question 3

a) State Gibb's phase rule as an equation.

[1mk]

b) Using examples, explain the following;

[6mks]

- i. Phase
- ii. Components of the system
- iii. Degrees of freedom
- c) State any THREE conditions that fulfill a phase in a system at equilibrium.

[3mks]

d) The dissociation of phosphoric acid, H₃PO₄, in water is:

- $H_3PO_4 + H_2O = H_2PO_4 + H_3O^+$
- $H_2PO_4^- + H_2O = HPO_4^{2-} + H_3O^+$
- $HPO_4^{2-} + H_2O = PO_4^{3-} + H_3O^+$
- $2H_2O = H_3O^+ + OH^-$
- i. Identify and determine the number of chemically distinct species, or constituents present. [3mks]
- ii. State the number of additional constraints imposed by conditions of either electroneutrality or stoichiometry. Hence determine the number of independent components. [3mks]
- iii. Assuming the system to exist as both liquid and vapour phases, use the phase rule to determine the variance of the system. [2mks]
- e) Calculate the change in the boiling point of water when the pressure is increased by 1 atmosphere. Boiling point of water is 373 K. Specific volume of steam = $1.671 \text{ m}^3 \text{ kg-1}$ and latent heat of steam is $2.268 \text{ x } 106 \text{ J Kg}^{-1}$. [3mks]

Question 4

(a) Define Gibb's free energy, G in terms of ΔH and ΔS

[1mk]

b) State three characteristics of spontaneous processes

[3mks]

(c). State the criteria used to determine the spontaneity of a reaction.

[3mks]

(d) Use the data in the table below to answer the questions which follow.

Substance	Fe ₂ O ₃ (s)	Fe(s)	C(s)	Co(g)	CO ₂ (g)
$\Delta H_{\rm f}^{\bullet}/{\rm kJ~mol}^{-1}$	-824.2	0	0	-110.5	-393.5
$S^{\bullet}/JK^{-1} \text{ mol}^{-1}$	87.4	27.3	5.7	197.6	213.6

The following equation shows one of the reactions which can occur in the extraction of iron.

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$

Calculate;

(i) the standard enthalpy change ΔH_f^{θ} for this reaction.

[3mks]

(ii) the standard entropy change for the reaction

[3mks]

(iii) Explain why this reaction is feasible at all temperatures.

[1mk]

(e) The reaction shown by the following equation can also occur in the extraction of iron.

$$Fe_2O_3(s) + 3C(s) \rightarrow 2Fe(s) + 3CO(g)$$

$$\Delta H^{\bullet} = +492.7 \text{ kJ mol}^{-1}$$

The standard entropy change, ΔS^{\bullet} , for this reaction is +542.6 J K⁻¹ mol⁻¹

i) Use this information to calculate the temperature at which this reaction becomes feasible. [3mks]

(ii) Calculate the temperature at which the standard free-energy change, ΔG^{\bullet} has the same value for the reactions in parts (d) and (e). [3mks]

Question 5

a) Explain the following;

[3mks]

- i. Enthalpy of formation
- ii. Enthalpy of combustion
- iii. Enthalpy of atomisation
- b) State four uses of heats of combustion.

[4mks]

c) State Hess law of heat summation.

[1mk]

- d)(i) Draw a fully-labelled Born-Haber cycle for the formation of solid barium chloride, BaCl₂, from its elements. Include state symbols for all species involved. [5mks]
- (ii)Use your Born-Haber cycle and the standard enthalpy data given below to calculate a value for the electron affinity of chlorine. [3mks]

Enthalpy of atomisation of barium +180 kJ mol⁻¹

Enthalpy of atomisation of chlorine $+122 \text{ kJ mol}^{-1}$

Enthalpy of formation of barium chloride —859 kJ mol⁻¹

First ionisation enthalpy of barium +503 kJ mol⁻¹

Second ionisation enthalpy of barium +965 kJ mol⁻¹

Lattice formation enthalpy of barium chloride —2056 kJ mol⁻¹

(e)Use data from part (d)(ii) and the entropy data given below to calculate the lowest temperature at which the following reaction becomes feasible.

[4mks]

$$BaCl_2(s) \rightarrow Ba(s) + Cl_2(g)$$

	BaCl ₂ (s)	Ba(s)	Cl ₂ (g)
S^{\bullet} / J K ⁻¹ mol ⁻¹	124	63	223