

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS **2015/2016 ACADEMIC YEAR**

FIRST YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE DEGREE

COURSE CODE:

SCH 212

COURSE TITLE: BASIC ORGANIC CHEMISTRY

DURATION: 2 HOURS

DATE: TUESDAY 5TH MAY 2016 TIME: 8 - 10AM

INSTRUCTIONS TO CANDIDATES

- Answer Question one and any other two of your choise.
- Indicate **answered questions** on the front cover.
- Start every question on a new page and make sure question's number is written on each page.

This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

SECTION A. (30 MARKS)

COMPULSORY

(v)

1. a) Define the following terms:

Electronegativity

(i)	Atomic orbitals	(1 mark)
(ii)	Hybridization	(1mark)
(iii)	Alicyclic	(1mark)
(iv)	Functional group	(1mark)

- b) Differentiate between a resonance hybrid and a hybrid orbital? (4 marks)
- c) Write the complete structural and condensed structural formulas for the following.
 - (i) 2-methyl -2- propanol (2marks)
 - (ii) 1,2-dichloro-1,1,2,2- tetrafluoro ethane (2marks)
- d) State the functional group(s) in the structural formulas of each of the following compounds and give the class (or classes) of compounds to which each belongs.
 - (i) CICH2CH2OH

- (iii)CH3CH2COOCH2CH3
- (iv)CH₃CH₂Br
- (v) HCON(CH₃)₂

(5marks)

(1mark)

- e) Predict the product of the following reaction, which takes place by the S_N2mechanism.

 CH₃CH₂0⁻+CH₃CH₂CH₂Br ______ (4marks)
- f) Give the IUPAC names of the following compounds. (8marks)

$$(ii) \qquad \qquad (H_3C)_2HC \qquad H_3C \qquad CH_3$$

$$(iii) \qquad \qquad (iii) \qquad HO \qquad CH_3$$

$$(iii) \qquad \qquad (iv) \qquad CH_3$$

SECTION B (40 MARKS)

ANSWER ANY TWO QUESTIONS FROM THIS SECTION

QUESTION TWO

(vi)

a). Write structural formula for a substrate that could be used to make $C_6H_5CH_2CN$ by an S_N2 reaction and show the nucleophile that would be used. (3marks)

(vii)

b) Explain any three reasons why carbon is uniquely important.

(3marks)

CH₂CH₃

'CH₃ (viii)

- c) Write structural formula for:
 - i) Heptane

	iii) 3-bromo-2-chloroheptane	
	iv) Pentan-2-01	
	v) Hex-2-ene	
	vi) Butanoic acid	(6marks)
c.	Explain the difference between	
	(i) Homolytic fission and heterolytic fission, giving an example of each.	(4marks)
	(ii)A substitution reaction and an addition reaction, giving an example of ea	ach (4marks)
Q	UESTION THREE	
	(a) Draw dot-and-cross diagrams for	
	i) F ₂	
	ii) HF	
	iii) SIF ₄	
	iv) SCl ₂	(4marks)
	b). Draw and name the E/Z isomers for	
	CH ₃ CH=CHCH ₂ CH ₃ .	(3marks)
	c). i). Write and name the possible isomers of C ₂ H ₄ Cl ₂	(2 marks)
	ii) Name the type of isomerism exhibited in c (i) above	(1mark)
	iii) Explain how one of the isomers above reacts with potassium hydroxide	e. Indicate the
	equation(s) of the reaction and mechanism for the reaction.	(2 marks)
	d). i) Define formal charges?	(2marks)
	ii). Calculate the formal charge on each atom in the following Lewis formulatermine the net charge:	ıla and
	(A) (:C::O: - carbon monoxide	

ii) 2-chloro-3-methylhexane

c.

QUESTION FOUR

- a) State the three principles used to distribute electrons in orbitals. (6marks)
- b) Show the distribution of electrons in the atomic orbitals of: (i) carbon, (ii) oxygen and (iii) nitrogen. (3marks)
- c) Identify each of the following as (1) carbocations, (2) carbanions, (3) radicals or (4) carbenes (4 marks)
 - (i) (CH₃)₂C:
 - (ii) (CH₃)₃C-
 - (iii) (CH3)3C+
 - (iv) (CH₃)₃C:
 - (v) CH3CH2CH2
 - (vi) CH3CH=CH
 - (vii) C6H5CHCH
 - (viii) сн,ён
- d) Classify the following reactions as substitution, addition, elimination, rearrangement, or redox. (A reaction may have more than one designation.) (7marks)

- (a) $CH_2=CH_2+Br_2\longrightarrow CH_2BrCH_2Br$
- (b) $C_2H_5OH + HCI \longrightarrow C_2H_5CI + H_2O$
- (c) CH₃CHClCHClCH₃ + Zn --- CH₃CH=CHCH₃ + ZnCl₂
- (d) $NH_4^+(CNO)^- \longrightarrow H_2NCNH_2$ 0
- (e) CH₃CH₂CH₂CH₃ --- (CH₃)₃CH
- (f) $H_2C CH_2 + Br_2 BrCH_2CH_2CH_2Br$
- (g) $3CH_3CHO + 2MnO_4^- + OH^- \xrightarrow{\Delta} 3CH_3COO^- + 2MnO_2 + 2H_2O$ (Δ means heat.)
- (h) HCCl₃ + OH- --- :CCl₂ + H₂O + Cl-
- (i) $BrCH_2CH_2CH_2Br + Zn \longrightarrow H_2C \longrightarrow CH_2 + ZnBr_2$