KIBABII UNIVERSITY # UNIVERSITY EXAMINATIONS 2017/2018ACADEMIC YEAR ## SECOND YEAR SECOND SEMESTER MAIN EXAMINATIONS FOR THE DEGREE OF B.ED (SCIENCE) **COURSE CODE:** **SCH 211** **COURSE TITLE:** **INORGANIC CHEMISTRY** DATE: 31/7/2018 **TIME: 9-11AM** #### INSTRUCTIONS TO CANDIDATES Answer question ONE and any other two questions This paper consists of 2 printed pages. Please Turn over ### QUESTION ONE (30 MARKS) | 1a) valence shell electron pair repulsion theory rests on 3 assumptions. Sta | ate them. (3 marks) | |---|-------------------------------------| | b) What is the shape (geometry) of the following molecules | (5 marks) | | a. Methane b. Phosphorous pentachloride c. Hydrogen cyanide d. Boron trichloride e. Ammonia | | | c) Define an acid and a base according to the following theories | | | a. Arrheniuos theoryb. Bronsted-lory theoryc. Lewis theory | (2 marks)
(2 marks)
(2 marks) | | di) Define a chemical bond | (1 mark) | | ii. List three types of chemical bonds | (3 marks) | | iii. Arrange the atoms in each of the series in order of increasing electrones a. C, F, H, N, O b. Al, H, Na, O, P c. Ba, H, N, O, As | gativity. (3 marks) | | e) Name the following complexes | (5 marks) | | i. $[Co(NH_3)_6]Cl_3$
ii. $[Cr(H_2O)_4Cl_2]Cl$
iii. $[Ag(NH_3)_2]^+$
iv. $[Pt(NH_3)_4Cl_2]^{2+}$
v. $[PtCl_6]^{2-}$ | | | f) Give four uses of complexes | (4 marks) | | QUESTION TWO (20 MARKS) | | | 2a) Differentiate between amphiprotic and amphoteric substances and examples. (2 mar | | | b. i) Define a strong acid and a weak base | (2 marks) | | ii) Calculate the pH of 0.1 mol dm ⁻³ hydrochloric acid. | (2 marks) | | iii)Show how pure water has a pH of 7 | (5 marks) | | c)Findthe pH of 0.500 mol dm ⁻³ sodium hydroxide solution | (3 marks) | - d) The pH of a solution of HCl in water is found to be 2.50. What volume of water would you add to 1.00 L of this solution to raise the pH to 3.10? (3 marks) - e) Write a balanced equation for the dissociation of each of the following Brønsted-Lowry acids in water: | i. | H_2SO_4 | (1 marks) | |------|------------------|-----------| | ii. | HSO ₄ | (1 marks) | | iii. | H_3O^+ | (1 marks) | #### **QUESTION THREE (20 MARKS)** 3 a)Predict the polarity of the following molecules. In each case show the geometry and the net dipole moments if any (6 marks) - a. CO₂ - b. CHCl₃ - c. H₂O - d. PCl₃ - e. SO₃ - f. HCN - b) The BCl₃ molecule has a trigonal planar shape. How is this explained in terms of valency bond theory? (3 marks) - c) Urea, NH₂C(O)NH₂ is a nitrogen fertilizer. What is the hybridization of the nitrogen, oxygen and carbon atoms in urea? (3 marks) - d) The concentration of hydrogen ions in wine was 4.1×10^{-4} M after the cap was removed. If half was consumed, the other half after standing pen for a month had a concentration of 2.3×10^{-3} M. Calculate the pH of the wine at the two occasions. Explain the results. (3½ marks) - e)State the assumptions Valence shell electron pair repulsion theory (1½ marks) - f) Give three factors that affect the strength of an acid (3 marks) #### **QUESTION FOUR (20 MARKS)** 4 a) Define the term geometric isomers (1 mark) b) Draw the geometric isomers of the following (3 marks) - i. $\left[\text{Co(NH_3)_4Cl_2}\right]^+$ - ii. $[Co(en)_2Cl_2]^+$ - iii. Pt(NH₃)₂Cl₂ Write an expression for calculating the K_a and the pK_aof the above reaction (4 marks) - d) In a NaOH solution the concentration of hydroxide ions is 7.2x10⁻³ M. Calculate the pH of the solution. (3 marks) - e) Which of the below structures is the most probable for ClF₃? Discuss (3 marks) f) Draw Lewis structures for the following (4 marks) - i. SiH₄ - ii. PO₂F₂ - iii. NO⁺ - iv. PH₃ - g) Differentiate between electronegativity and electron affinity (2 marks)