

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER SUPPLENTARY/SPECIAL EXAMINATIONS

FOR THE DEGREE OF B.ED (SCIENCE)

COURSE CODE:

SCH 210

COURSE TITLE:

ATOMIC STRUCTURE AND CHEMICAL BONDING

DURATION: 2 HOURS

DATE: 01/10/2018

TIME: 8-10 AM

INSTRUCTIONS TO CANDIDATES

Answer QUESTION ONE (Compulsory) and any other two (2) Questions.

Indicate answered questions on the front cover.

- Start every question on a new page and make sure question's number is written on each page.

This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

SECTION A COMPULSORY QUESTION (30 MARKS)

(a)	Given that the sublimation energy of a solid potassium is 90kJ/mol, dissociation energy of
	chlorine is 121.5kJ/mol, ionization energy of potassium is 420kJ/mol and the electron
	affinity -355KJ/mol. Lattice energy = - 703kJ/mol. Sketch the Born- Haber cycle for the
	formation of potassium chloride from which to determine the enthalpy of formation.
	[5marks]

(b) The lattice energies of some ionic compounds are given below:

NaCl = 600kJ/mol

LiF = 10400kJ/mol

 $CaCl_2 = 2200kJ/mol$

(i) Define lattice of an ionic compound. [2marks]

(ii) Briefly explain why LiF has higher lattice energy than NaCl. [2marks]

(iii) The lattice of CaCl₂ is almost three times that of NaCl. [2marks]

(iv) Calculate the wave number if $n_1 = 3$ and $n_2 = 4$ and $n_1 = 2$ and $n_2 = 6.8899$ [2marks]

(c) Define the terms:

(i) Polar covalent bond.

[1marks]

(ii) Hybrid orbitals.

[11/2 marks]

(iii) Molecular orbitals.

 $[1^1/2 \text{marks}]$

(d) Give the difference between

(i) A sigma bond and a π -bond.

[2marks]

(ii) A diamagnetic and a paramagnetic substance.

[2marks]

(e) Plot the shape of orbitals for which l = 1.

[2marks]

(f) What is the characteristic wavelength of an electron with a velocity of 5.97 x 106m/s. [3marks]

(g) (i) Give the difference between valence bond theory and molecular bond theory. [2marks

(ii)Differenciate between antibonding and bonding molecular orbitals.

[2marks]

Question 2

- (a) Formaldehyde, H₂CO, is a colourless pungent gas used to make plastics. Give the valence bond description of the formaldehyde molecule. (Bond hydrogen atoms are attached to the carbon atoms). [2marks]
- (b) Solution to the equation above gives rise to four quantum numbers. State these numbers, give their acceptable values and what they determine. [2marks]
- (c) Write down the electron configuration of the following elements and state the block of the periodic table in which they belong to. (Atomic numbers; Cr = 24, Sb = 51, Ce = 58).[3marks]
- (d) IR light emitted from a TV remote control has a wavelength of 805nm. Calculate:

(i)The frequency of its photons.

[3marks]

(ii)The energy of its photons.

[2marks]

(e) Spectral line is produced when the hydrogen atom jumps from n = 3 to n = 2. Calculate;

(i) The wave number of the spectral line produced.

[2marks]

(ii)The energy of the radiation produced.

[2marks]

(f) (i)Define orbital hybridization.

(ii)Complete the table below for hybridization in carbon.

[6marks]

Hybridization state	Number of hybrid orbitals	Number of σ bonds	Number of π bonds	Geometry around carbon
SP ³	-	-	-	-
SP ²	-	-	-	-
SP		-	-	-

Question 3

(a) Explain the meaning of the following.

[6marks]

- (i)Photoelectron
- (ii)Black body
- (iii)Degenerate orbitals
- (b) Outline the four postulates upon which Bohr's atomic model is based.

[2marks]

(c) State the limitations of Bohr's theory.

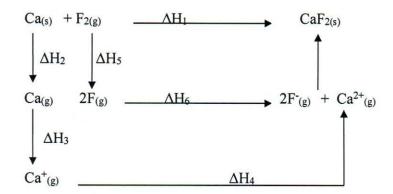
[2marks]

(d) Calculate the radius of Bohr's orbit for a hydrogen atom.

[3marks]

Calculate the frequency of the radiation required to eject photoelectrons at a velocity of 9 x 10⁵m/s from a sodium metal surface having a threshold frequency of 4.61 x 10¹⁴Hz. [3marks]

(e) The speed of a 1.75g projectile is known to be within 1.0×10^{-6} m/s. Given that the Plank's constant, $h = 6.626 \times 10^{-34}$ Js, calculate the minimum uncertainty in position for this particle. (Mass of electron = 9.11×10^{-31} kg). [2marks]


(f) Calculate the wavelength of the 12th line in the Balmer series of hydrogen spectrum [2marks]

Question 4

(a) Define each of the following.

[4marks]

- (i)Electro negativity
- (ii)The standard enthalpy of formation
- (iii)The standard enthalpy of atomization
- (iv)Electron affinity

- (c) (i) Briefly explain how a molecular orbital is a major factor in the formation of a metallic bond. [2marks]
 - (ii)Draw Lewis structures that represent an ionic bond that exists between Ca and Br ions. [2marks]
 - (iii) Write down the Schrödinger equation in three dimensions indicating what m, ψ , E, V stand for. [4marks]
- (iv)Write down two possible sets of quantum numbers that describe an electron in a 2S atomic orbital. [2marks]
- (d)Use the following data, which are in Kj/mol to calculate the lattice energy of Magnesium Bromide. [4marks]

Sublimation energy of Magnesium+2187

Vaporization energy of Br_{2(l)}+31

Dissociation energy of Bromine gas.....+193

Electron affinity of Bromine gas-331

Enthalpy of formation, ΔH_f (MgBr₂) - 524

Question 5 The following table shows melting points and conductivity of five elements/ substances

Substance	Melting point/k	Conductivity in solid	Conductivity in molten
		state	state
MgO	3173	Poor	Good
NaCl	1081	Poor	Good
Mg	923	Good	Good
CO ₂	217	Poor	Poor
SiO ₂	1883	poor	Poor

- a) Explain why the conductivity of $MgO_{(l)}$ good whereas that of $MgO_{(s)}$ is poor. [2marks]
- b) Explain why the melting point of MgO is much higher than that of NaCl even though both are ionic compounds. [2marks]
- c) Why is the conductivity of Mg good both in solid and liquid states? [2marks]
- d) By illustration using suitable examples, explain how the following bonds are formed; metallic bond and ionic bond [6marks]
- e) Briefly describe the band theory and use it to differentiate between conductors, semi conductors and insulators. [8marks]