

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF B.ED (SCIENCE)

COURSE CODE:

SCH 210

COURSE TITLE:

ATOMIC STRUCTURE AND CHEMICAL

BONDING

DURATION: 2 HOURS

DATE: MONDAY 8TH JANUARY 2018 TIME: 9 - 11AM

INSTRUCTIONS TO CANDIDATES

Answer **QUESTION ONE** (Compulsory) and any other two (2) Questions.

Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page.

This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

 $h = 6.626 \times 10^{-34} js$

 $c = 3.0 \times 10^{8} \text{m/s}$

SECTION A

Question 1

(a) Define the term atomic radius. [1marks]

(b) Distinguish between a covalent radius, van der waals radius and ionic radius. [2marks]

(c) Study the table below and use the information to answer the questions that follow

Element	Na	Mg	Al	Si	P	S	Cl
Atomic radius	1.90	1.60	1.43	1.32	1.28	1.27	0.98
Ionic radius	0.95	0.65	0.50	2.71	2.12	1.84	1.81
1 st Ionization energy	492	743	5.79	791	1060	1003	1254

(i) Explain the gradual decrease of atomic radius across the period. [2marks]

(ii) The ionic radius of Na⁺, Mg²⁺ and Al³⁺ are less than the corresponding atomic radius while the ionic radius of Cl² and S²⁻. Explain . [4marks]

(iii) Explain the general increase in the first ionization energy across the period.[2marks]

(d) Briefly explain the concept of particle wave duality of matter. [2marks]

(e) What is the equation of De Broqlie wavelength? Define the terms. [3marks]

(f) Calculate the De Broqlie's wavelength of a photon with a mass of 1.6 x 10 -27kg travelling at 40 of the speed of light. [3marks]

(g) State four quantum numbers used to characterise an electron in an atom and also describe the information each give. [4marks]

(h) Draw all the shapes of 2p orbitals. [3marks]

(i) Using an equation, explain Heisenberg's uncertainty principle. [2marks]

(j) State the significance of the following. [3marks]

(i) Radial wave function

(ii) Radial distribution function

(iii) Angular wave function

Question 2

(a) Sketc	th all the 3d orbitals.	[5marks]
(b) Expla	ain the shielding effect of electrons.	[2marks]
(c) List t	he line series in the hydrogen atomic spectrum.	[5marks]
(d) State	the significance of the square of the wave function.	[2marks]
(e) Draw	and predict the shapes of the following molecules	
(i)	Aluminium chloride.	[2marks]
(ii)	Phosphorus pentafluoride.	[2marks]
(iii)	Sulphur hexafluoride.	[2marks]

Question 3

- (a) Draw the molecular orbital diagrams for the following molecules and ions and each [10marks] case, determine the bond order and magnetic properties.
 - O_2^{2-} (i)
 - N2 (ii)
- (b) Sketch and describe graphs of variation of ψ and ψ^2 with the length of a box X for n [8marks] =1, 2,3 and 4 for a particle in one dimensional box.
- (c) State Hess' law.

[2marks]

Question 4

- (a) Predict and draw the molecular geometries of the molecules or ions. [10marks]
 - CrO₄²-
 - IF₆⁺ (ii)
 - CIF₃ (iii)
 - H_2F^+ (iv)
 - PF₄ (v)
- (b) Predict the hybridization of the central atom in the molecules/ ions in (a) above.[5marks]
- (c) The speed of a 2.5g projectile is known to be within 1.0×10^{-6} m/s. From the concept of Heisenberg's uncertainty principle, determine the minimum uncertainty in position [5marks] for this particle.

Question 5

The table below gives single bond covalent radii (all in Å) for some atoms of main group elements.

Element	Н	F	Cl	Br	I
	0.27	0.72	0.99	1.14	1.33
Atomic radii,Å Van der waals	0.37	1.35	1.80	1.95	2.15
adii, Å		4.10	2.83	2.74	2.21
Electronegativity	2.20	4.10	2.83	2.74	

Use it to answer the questions that follow

- Why are values of van der waals radii of elements less than the corresponding i) values of covalent atomic radii?
- Given the inter nuclear distance $d_{A-B} = r_A + r_B$, calculate the inter nuclear distance ii) [2marks] for the atoms in the following molecules.
 - HF (i)
 - **HCl** (ii)
 - **HBr** (iii)
 - HI (iv)

iii) The experimental values for inter nuclear distance for the four molecules in the above question were found to be as follows

Molecule	HF	HCl	HBr	HI
$d_{A-B}(A)$	0.919	1.28	1.42	1.61

How do the values compare with the mathematical values expected in the above calculated values? Explain the difference. [2marks]

- iv) By using a suitable example, explain how multiplicity of bonds between atoms can influence the atomic size. [1mark]
- v) Define the term ionization energy.

[1mark]

vi) The table below shows successive ionization energies(kj/mol) of elements of the same periodic table. Use it to answer the questions that follow

Element (M)	$IE [M_{(g)} \longrightarrow M^+_{(g)}]$	$IE_2[M^+_{(g)} \longrightarrow M^{+2}_{(g)}]$	$IE_3[M^{2+}_{(g)} \rightarrow M^{+3}_{(g)}]$
Li	520	7298	11814
Be	899	1757	14848
В	800	2427	3659
C	1086	2352	4620
N	1402	2856	4578
0	1314	3388	5300
F	1681	3374	6050
Ne	2080	3952	6122

- a) Explain the trend in successive ionization energies for the elements in this period.
 [2marks]
- b) Why is iE1 values for Be greater than that for B?

[2marks]

- c) Explain the general trend of magnitude of ionization energies across the period. [2marks]
- v) Differentiate between electron affinity and electronegativity.

[2marks]

The table below shows electron affinity values for elements in period 3

Element	Na	Mg	Al	Si	P	S	Cl	Ar
EA(kj/g- atom)	52.7	≤0	42.6	133.6	71.7	200.43	348.8	≤0

a) Explain the magnitude of EA values for Mg and Ar.

[2marks]

b) Explain the general trend observed for EA values from left to right across the period. [2marks]