KIBABII UNIVERSITY # UNIVERSITY EXAMINATIONS 2016/2017 ACADEMIC YEAR FIRST YEAR SECOND SEMESTER SUPPLEMENTARY/SPECIAL EXAMINATIONS FOR THE DEGREE OF B.ED (SCIENCE) COURSE CODE: SCH 101 **COURSE TITLE:** FUNDAMENTALS OF CHEMISTRY II **DURATION: 2 HOURS** DATE: 26TH SEPTEMBER 2017 TIME: 3 - 5PM #### **INSTRUCTIONS TO CANDIDATES** This paper consists of FIVE questions. Answer question ONE which is COMPULSORY(30 marks) and any other TWO questions from questions two, three, four and five (20 marks each) # **QUESTION ONE (30 MARKS)** 1. a) When 0.08 moles CO, 0.14 moles of H_2 , and 0.08 moles of CH_4 are placed in a 1-L vessel at temperature T and allowed to come to equilibrium. The mixture is found to contain 0.01 moles H_2O for the reaction: $CO(g) + 3 H_2(g) \rightarrow CH_4(g) + H_2O(g)$ What is the equilibrium constant, K? [04] b) 1.000 mole of H_2 gas and 1.000 mole of I_2 vapor are introduced into a 5.00-liter sealed flask. The mixture is heated to a certain temperature and the following reaction occurs until equilibrium is established. $$H_2(g) + I_2(g) \rightleftarrows 2HI(g)$$ At equilibrium, the mixture is found to contain 1.580 mole of HI. - i. What are the concentrations of H₂, I₂ and HI at equilibrium? [03] ii. Calculate the equilibrium constant K_c. [02] c) State the *Le Châtelier's principle*. [01] - d) State three factors that influence equilibrium: [03] - e) Consider the reactions below. Explainhowincrease in pressurewould affect the direction of the reaction. - a) $2SO_2(g) + O_2(g) \rightleftarrows 2SO_3(g)$, [02] b) $PCl_5(g) \rightleftarrows PCl_3(g) + Cl_2(g)$; [02] c) $CO(g) + H_2O(g) \rightleftarrows CO_2(g) + H_2(g)$; [02] f) State Raoult's law. [01] - g) What is the vapor pressure of the pure solvent if the vapor pressure of a solution of 10 g of sucrose $(C_6H_{12}O_6)$ in 100 g of ethanol (C_2H_6O) is 55 mmHg?[04] - h) Calculate osmotic pressure for 0.10 M Na₃PO₄ at 20°C. [02] - i)...Calculate molarity if solution in water (300 K) has osmotic pressure of 3.00 atm. [02] - j)Hemoglobin is a large molecule that carries oxygen in human blood. A water solution that contains 0.263 g of hemoglobin (Hb) in 10.0 mL of solution has an osmotic pressure of 7.51 torr at 25oC. What is the molar mass of the hemoglobin? [02] #### **QUESTION TWO (20 MARKS)** 2. a) Air is primarily a mixture of nitrogen N_2 molecules (molecular mass 28.0u) and oxygen O_2 molecules (molecular mass 32.0u). Assume that each behaves as an ideal gas and determine the rms speeds of the nitrogen and oxygen molecules when the temperature of the airis 293K. [05] - b) Calculate the pressure exerted by 84.0 g of ammonia, NH₃, in a 5.00 L container at 200. $^{\circ}$ C using the van der Waal's equation. The van der Waal's constants for ammonia are: a = 4.17 atm L^{2} mol⁻² b = 3.71x10⁻² Lmol⁻¹ [05] - c) If sulfur dioxide were an "ideal" gas, the pressure at 0°C exerted by 1.000 mol occupying 22.41 L would be 1.000 atm. Use the van der Waals equation to estimate the "real" pressure. (a = 6.865 L² atm/mol² and b = 0.05679 L/mol) [05] d) What are the assumptions made for an ideal gas? [03] e) For gases; hydrogen, ammonia and chlorine state with reasons which gas is closest to ideal behavior at stp. [02] ## **QUESTION THREE (20 MARKS)** 2 a) Define the following terms; i) Phase Equilibrium: [02] ii) Binary Isomorphous Systems: [02] iii) Binary Eutectic Systems: [02] iv) Component of a system: [02] v) Solubility Limit: [02] b) Draw a schematic representation of the one-component phase diagram for H_2O . The projection of the phase diagram to show information at 1 atm generating a temperature scale labeled with the familiar transformation temperatures for H_2O (melting at $0^{\circ}C$ and boiling at $100^{\circ}C$). #### **QUESTION FOUR (20 MARKS)** a)Define the term pH [01] b) Calculate the PH of the following solutions: i) 1.5M HF solution whose $K_a = 7.0 \times 10^{-4}$ ii) Sulphuric acid solution whose concentration is $2.4 \times 10^{-3} \text{ M}$ iii) Sodium hydroxide solution whose concentration is 2.4×10^{-3} [04] c) i. What is a buffer solution [02] ii. How is buffer solution prepared? [02] iii. What is the pH of a solution of 0.400M formic acid in 1.000M sodium formate? $(\text{Take H}_2\text{O} + \text{HCOOH} \leftrightarrow \text{H}_3\text{O}^+ + \text{HCOO}^-)$ $(K_a = 1.80 \times 10^{-4})$ [04] ### **QUESTION FIVE (20 MARKS)** 5 a) Differentiate by defining between empirical formula and molecular formula of a compound [02] b) The percentage of copper in a sample was determined by dry ashing. The results obtained were tabulated as below. | Quantity | Mass (g) | |-------------------------------|----------| | Mass of empty porcelain boat | 14.4 | | Mass of boat + copper oxide | 18.4 | | Mass of boat + reduced copper | 17.6 | Use the information to determine the formula of the oxide of copper. (take Cu = 63.5 gmol and O=16gmol[06] - c) A hydrocarbon has a percent composition by mass of 85.7% of carbon and the rest hydrogen. Determine the empirical formula of the hydrocarbon. If the molecular mass of the compound is 56. Calculate its molecular formula. [06] - d) Discuss the sources of error during gravimetric analysis. [06]